These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 10400875)
1. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. Nam YS; Park TG J Biomed Mater Res; 1999 Oct; 47(1):8-17. PubMed ID: 10400875 [TBL] [Abstract][Full Text] [Related]
2. Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Nam YS; Park TG Biomaterials; 1999 Oct; 20(19):1783-90. PubMed ID: 10509188 [TBL] [Abstract][Full Text] [Related]
3. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates. Chen G; Ushida T; Tateishi T Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089 [TBL] [Abstract][Full Text] [Related]
4. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering. Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291 [TBL] [Abstract][Full Text] [Related]
5. Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. Zhang R; Ma PX J Biomed Mater Res; 1999 Mar; 44(4):446-55. PubMed ID: 10397949 [TBL] [Abstract][Full Text] [Related]
6. Architecture control of three-dimensional polymeric scaffolds for soft tissue engineering. I. Establishment and validation of numerical models. Cao Y; Davidson MR; O'Connor AJ; Stevens GW; Cooper-White JJ J Biomed Mater Res A; 2004 Oct; 71(1):81-9. PubMed ID: 15368257 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers: I. Synthesis and characterization. Wang N; Wu XS; Li C; Feng MF J Biomater Sci Polym Ed; 2000; 11(3):301-18. PubMed ID: 10841281 [TBL] [Abstract][Full Text] [Related]
8. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method. Chun KW; Cho KC; Kim SH; Jeong JH; Park TG J Biomater Sci Polym Ed; 2004; 15(11):1341-53. PubMed ID: 15648567 [TBL] [Abstract][Full Text] [Related]
9. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
10. Low temperature formation of calcium-deficient hydroxyapatite-PLA/PLGA composites. Durucan C; Brown PW J Biomed Mater Res; 2000 Sep; 51(4):717-25. PubMed ID: 10880121 [TBL] [Abstract][Full Text] [Related]
11. Effect of some factors on fabrication of poly(L-lactic acid) microporous foams by thermally induced phase separation using N,N-dimethylacetamide as solvent. Li S; Chen X; Li M Prep Biochem Biotechnol; 2011; 41(1):53-72. PubMed ID: 21229464 [TBL] [Abstract][Full Text] [Related]
12. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528 [TBL] [Abstract][Full Text] [Related]
13. A simple synthetic route to the formation of a block copolymer of poly(lactic-co-glycolic acid) and polylysine for the fabrication of functionalized, degradable structures for biomedical applications. Lavik EB; Hrkach JS; Lotan N; Nazarov R; Langer R J Biomed Mater Res; 2001 May; 58(3):291-4. PubMed ID: 11319743 [TBL] [Abstract][Full Text] [Related]
14. Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. Yoon JJ; Park TG J Biomed Mater Res; 2001 Jun; 55(3):401-8. PubMed ID: 11255194 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
16. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. Wu XS; Wang N J Biomater Sci Polym Ed; 2001; 12(1):21-34. PubMed ID: 11334187 [TBL] [Abstract][Full Text] [Related]
17. Production and surface modification of polylactide-based polymeric scaffolds for soft-tissue engineering. Cao Y; Croll TI; Cooper-White JJ; O'Connor AJ; Stevens GW Methods Mol Biol; 2004; 238():87-112. PubMed ID: 14970441 [No Abstract] [Full Text] [Related]
18. Design of amine-modified graft polyesters for effective gene delivery using DNA-loaded nanoparticles. Oster CG; Wittmar M; Unger F; Barbu-Tudoran L; Schaper AK; Kissel T Pharm Res; 2004 Jun; 21(6):927-31. PubMed ID: 15212155 [TBL] [Abstract][Full Text] [Related]
19. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Mooney DJ; Baldwin DF; Suh NP; Vacanti JP; Langer R Biomaterials; 1996 Jul; 17(14):1417-22. PubMed ID: 8830969 [TBL] [Abstract][Full Text] [Related]
20. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation. Mo X; Weber HJ; Ramakrishna S Int J Artif Organs; 2006 Aug; 29(8):790-9. PubMed ID: 16969757 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]