These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10400948)

  • 1. Nonlinear frequency-dependent synchronization in the developing hippocampus.
    Prida LM; Sanchez-Andres JV
    J Neurophysiol; 1999 Jul; 82(1):202-8. PubMed ID: 10400948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneous populations of cells mediate spontaneous synchronous bursting in the developing hippocampus through a frequency-dependent mechanism.
    Menendez de la Prida L; Sanchez-Andres JV
    Neuroscience; 2000; 97(2):227-41. PubMed ID: 10799755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization of GABAergic interneuronal network in CA3 subfield of neonatal rat hippocampal slices.
    Khazipov R; Leinekugel X; Khalilov I; Gaiarsa JL; Ben-Ari Y
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):763-72. PubMed ID: 9051587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous recurrent network activity in organotypic rat hippocampal slices.
    Mohajerani MH; Cherubini E
    Eur J Neurosci; 2005 Jul; 22(1):107-18. PubMed ID: 16029200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the synchronized network activity in the rabbit developing hippocampus.
    Menendez de la Prida L; Bolea S; Sanchez-Andres JV
    Eur J Neurosci; 1998 Mar; 10(3):899-906. PubMed ID: 9753157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GABAergic control of CA3-driven network events in the developing hippocampus.
    Sipilä ST; Kaila K
    Results Probl Cell Differ; 2008; 44():99-121. PubMed ID: 17622497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate controls the induction of GABA-mediated giant depolarizing potentials through AMPA receptors in neonatal rat hippocampal slices.
    Bolea S; Avignone E; Berretta N; Sanchez-Andres JV; Cherubini E
    J Neurophysiol; 1999 May; 81(5):2095-102. PubMed ID: 10322051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchronization of GABAergic interneuronal networks during seizure-like activity in the rat horizontal hippocampal slice.
    Velazquez JL; Carlen PL
    Eur J Neurosci; 1999 Nov; 11(11):4110-8. PubMed ID: 10583499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Changes from Depolarizing to Hyperpolarizing GABAergic Actions during Giant Depolarizing Potentials in the Neonatal Rat Hippocampus.
    Khalilov I; Minlebaev M; Mukhtarov M; Khazipov R
    J Neurosci; 2015 Sep; 35(37):12635-42. PubMed ID: 26377455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous release of GABA activates GABAB receptors and controls network activity in the neonatal rat hippocampus.
    McLean HA; Caillard O; Khazipov R; Ben-Ari Y; Gaiarsa JL
    J Neurophysiol; 1996 Aug; 76(2):1036-46. PubMed ID: 8871218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depolarizing GABA acts on intrinsically bursting pyramidal neurons to drive giant depolarizing potentials in the immature hippocampus.
    Sipilä ST; Huttu K; Soltesz I; Voipio J; Kaila K
    J Neurosci; 2005 Jun; 25(22):5280-9. PubMed ID: 15930375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro.
    Traub RD; Bibbig R; Piechotta A; Draguhn R; Schmitz D
    J Neurophysiol; 2001 Mar; 85(3):1246-56. PubMed ID: 11247993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronous bursting in a subset of interneurons inhibitory to the goldfish Mauthner cell: synaptic mediation and plasticity.
    Charpier S; Behrends JC; Chang YT; Sur C; Korn H
    J Neurophysiol; 1994 Aug; 72(2):531-41. PubMed ID: 7983517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interneurons Differentially Contribute to Spontaneous Network Activity in the Developing Hippocampus Dependent on Their Embryonic Lineage.
    Wester JC; McBain CJ
    J Neurosci; 2016 Mar; 36(9):2646-62. PubMed ID: 26937006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronized network activity in developing rat hippocampus involves regional hyperpolarization-activated cyclic nucleotide-gated (HCN) channel function.
    Bender RA; Galindo R; Mameli M; Gonzalez-Vega R; Valenzuela CF; Baram TZ
    Eur J Neurosci; 2005 Nov; 22(10):2669-74. PubMed ID: 16307610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic inputs to stellate cells in the ventral cochlear nucleus.
    Ferragamo MJ; Golding NL; Oertel D
    J Neurophysiol; 1998 Jan; 79(1):51-63. PubMed ID: 9425176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal patterns and depolarizing actions of spontaneous GABAA receptor activation in granule cells of the early postnatal dentate gyrus.
    Hollrigel GS; Ross ST; Soltesz I
    J Neurophysiol; 1998 Nov; 80(5):2340-51. PubMed ID: 9819247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.