BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10401672)

  • 21. High-resolution studies of hydride transfer in the ferredoxin:NADP
    Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA
    FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of FMN-dependent NADH-quinone reductase induced by menadione in Escherichia coli.
    Hayashi M; Hasegawa K; Oguni Y; Unemoto T
    Biochim Biophys Acta; 1990 Aug; 1035(2):230-6. PubMed ID: 2118386
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation between thyroid peroxidase, H2O2 generating system and NADPH-dependent reductase activities in thyroid particulate fractions.
    Michot JL; Deme D; Virion A; Pommier J
    Mol Cell Endocrinol; 1985 Jul; 41(2-3):211-21. PubMed ID: 4018397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase.
    Mayer B; John M; Heinzel B; Werner ER; Wachter H; Schultz G; Böhme E
    FEBS Lett; 1991 Aug; 288(1-2):187-91. PubMed ID: 1715290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas.
    Dupuy C; Ohayon R; Valent A; Noël-Hudson MS; Dème D; Virion A
    J Biol Chem; 1999 Dec; 274(52):37265-9. PubMed ID: 10601291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced nicotinamide adenine dinucleotide oxidase activity and H2O2 formation of Mycoplasma pneumoniae.
    Low IE; Zimkus SM
    J Bacteriol; 1973 Oct; 116(1):346-54. PubMed ID: 4147646
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the NADPH-dependent superoxide production activated by sodium dodecyl sulfate in a cell-free system of pig neutrophils.
    Fujita I; Takeshige K; Minakami S
    Biochim Biophys Acta; 1987 Oct; 931(1):41-8. PubMed ID: 2820510
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery and characterization of a Coenzyme A disulfide reductase from Pyrococcus horikoshii. Implications for this disulfide metabolism of anaerobic hyperthermophiles.
    Harris DR; Ward DE; Feasel JM; Lancaster KM; Murphy RD; Mallet TC; Crane EJ
    FEBS J; 2005 Mar; 272(5):1189-200. PubMed ID: 15720393
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of age, hexobarbital, and aniline on NADPH/NADH dependent hydrogen peroxide production in rat hepatic microsomes.
    Klinger W; Freytag A; Schmitt W
    Arch Toxicol Suppl; 1986; 9():382-5. PubMed ID: 3468920
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of angiotensin II on energetics, glucose metabolism and cytosolic NADH/NAD and NADPH/NADP redox in vascular smooth muscle.
    Barron JT; Sasse MF; Nair A
    Mol Cell Biochem; 2004 Jul; 262(1-2):91-9. PubMed ID: 15532713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NADPH-dependent H2O2 generation catalyzed by thyroid plasma membranes. Studies with electron scavengers.
    Dupuy C; Kaniewski J; Dème D; Pommier J; Virion A
    Eur J Biochem; 1989 Nov; 185(3):597-603. PubMed ID: 2556271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyridoxamine-phosphate oxidases and pyridoxamine-phosphate oxidase-related proteins catalyze the oxidation of 6-NAD(P)H to NAD(P).
    Marbaix AY; Chehade G; Noël G; Morsomme P; Vertommen D; Bommer GT; Van Schaftingen E
    Biochem J; 2019 Oct; 476(20):3033-3052. PubMed ID: 31657440
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differential transfers of reduced flavin cofactor and product by bacterial flavin reductase to luciferase.
    Jeffers CE; Tu SC
    Biochemistry; 2001 Feb; 40(6):1749-54. PubMed ID: 11327836
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solubilization and characteristics of the thyroid NADPH-dependent H2O2 generating system.
    Dupuy C; Virion A; Hammou NA; Kaniewski J; Dème D; Pommier J
    Biochem Biophys Res Commun; 1986 Dec; 141(2):839-46. PubMed ID: 3801031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activation of an H2O2-generating NADH oxidase in human lung fibroblasts by transforming growth factor beta 1.
    Thannickal VJ; Fanburg BL
    J Biol Chem; 1995 Dec; 270(51):30334-8. PubMed ID: 8530457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages.
    Livingston FR; Lui EM; Loeb GA; Forman HJ
    Arch Biochem Biophys; 1992 Nov; 299(1):83-91. PubMed ID: 1444455
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Partial purification of the superoxide-generating system of macrophages. Possible association of the NADPH oxidase activity with a low-potential (-247 mV) cytochrome b.
    Berton G; Papini E; Cassatella MA; Bellavite P; Rossi F
    Biochim Biophys Acta; 1985 Nov; 810(2):164-73. PubMed ID: 4063352
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogenase encapsulation into red blood cells and regeneration of electron acceptor.
    Axley MJ; Dad LK; Harabin AL
    Biotechnol Appl Biochem; 1996 Oct; 24(2):95-100. PubMed ID: 8865603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.