These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10401927)

  • 1. Neural networks and linear programming for the satisfiability problem.
    Monfroglio A
    Int J Neural Syst; 1999 Feb; 9(1):11-25. PubMed ID: 10401927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear programming based on neural networks for radiotherapy treatment planning.
    Wu X; Zhu Y; Luo L
    Phys Med Biol; 2000 Mar; 45(3):719-28. PubMed ID: 10730966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the linear interval tolerance problem for weight initialization of neural networks.
    Adam SP; Karras DA; Magoulas GD; Vrahatis MN
    Neural Netw; 2014 Jun; 54():17-37. PubMed ID: 24637071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A recurrent neural network for solving bilevel linear programming problem.
    He X; Li C; Huang T; Li C; Huang J
    IEEE Trans Neural Netw Learn Syst; 2014 Apr; 25(4):824-30. PubMed ID: 24807959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Constraint satisfaction problems and neural networks: A statistical physics perspective.
    Mézard M; Mora T
    J Physiol Paris; 2009; 103(1-2):107-13. PubMed ID: 19616623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel recurrent neural network with finite-time convergence for linear programming.
    Liu Q; Cao J; Chen G
    Neural Comput; 2010 Nov; 22(11):2962-78. PubMed ID: 20804382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Symmetric Neural Networks and Propositional Logic Satisfiability.
    Pinkas G
    Neural Comput; 1991; 3(2):282-291. PubMed ID: 31167301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.
    Liu Q; Wang J
    IEEE Trans Neural Netw; 2011 Apr; 22(4):601-13. PubMed ID: 21402513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving linear integer programming problems by a novel neural model.
    Cavalieri S
    Int J Neural Syst; 1999 Feb; 9(1):27-39. PubMed ID: 10401928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A recurrent neural network for solving linear projection equations.
    Xia Y; Wang J
    Neural Netw; 2000 Apr; 13(3):337-50. PubMed ID: 10937967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations.
    Xia Y; Feng G; Wang J
    Neural Netw; 2004 Sep; 17(7):1003-15. PubMed ID: 15312842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zhang neural network versus gradient neural network for solving time-varying linear inequalities.
    Xiao L; Zhang Y
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1676-84. PubMed ID: 21846604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A recurrent neural network for adaptive beamforming and array correction.
    Che H; Li C; He X; Huang T
    Neural Netw; 2016 Aug; 80():110-7. PubMed ID: 27203554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The simultaneous recurrent neural network for addressing the scaling problem in static optimization.
    Serpen G; Patwardhan A; Geib J
    Int J Neural Syst; 2001 Oct; 11(5):477-87. PubMed ID: 11709814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A non-penalty recurrent neural network for solving a class of constrained optimization problems.
    Hosseini A
    Neural Netw; 2016 Jan; 73():10-25. PubMed ID: 26519931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter estimation in spiking neural networks: a reverse-engineering approach.
    Rostro-Gonzalez H; Cessac B; Vieville T
    J Neural Eng; 2012 Apr; 9(2):026024. PubMed ID: 22419215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A delayed projection neural network for solving linear variational inequalities.
    Cheng L; Hou ZG; Tan M
    IEEE Trans Neural Netw; 2009 Jun; 20(6):915-25. PubMed ID: 19423439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Projection Neural Network for Constrained Quadratic Minimax Optimization.
    Liu Q; Wang J
    IEEE Trans Neural Netw Learn Syst; 2015 Nov; 26(11):2891-900. PubMed ID: 25966485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A class of finite-time dual neural networks for solving quadratic programming problems and its k-winners-take-all application.
    Li S; Li Y; Wang Z
    Neural Netw; 2013 Mar; 39():27-39. PubMed ID: 23334164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A delayed neural network for solving linear projection equations and its analysis.
    Liu Q; Cao J; Xia Y
    IEEE Trans Neural Netw; 2005 Jul; 16(4):834-43. PubMed ID: 16121725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.