These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 10401985)

  • 1. Neuronal substrates participating in attentional set-shifting of rules for visually guided motor selection: a functional magnetic resonance imaging investigation.
    Omori M; Yamada H; Murata T; Sadato N; Tanaka M; Ishii Y; Isaki K; Yonekura Y
    Neurosci Res; 1999 Apr; 33(4):317-23. PubMed ID: 10401985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable mechanisms of attentional control within the human prefrontal cortex.
    Nagahama Y; Okada T; Katsumi Y; Hayashi T; Yamauchi H; Oyanagi C; Konishi J; Fukuyama H; Shibasaki H
    Cereb Cortex; 2001 Jan; 11(1):85-92. PubMed ID: 11113037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural networks of response shifting: influence of task speed and stimulus material.
    Loose R; Kaufmann C; Tucha O; Auer DP; Lange KW
    Brain Res; 2006 May; 1090(1):146-55. PubMed ID: 16643867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attentional set shifting modulates the target P3b response in the Wisconsin card sorting test.
    Barceló F; Muñoz-Céspedes JM; Pozo MA; Rubia FJ
    Neuropsychologia; 2000; 38(10):1342-55. PubMed ID: 10869577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the dorsolateral prefrontal cortex in the inhibition of stereotyped responses.
    Kadota H; Sekiguchi H; Takeuchi S; Miyazaki M; Kohno Y; Nakajima Y
    Exp Brain Res; 2010 Jun; 203(3):593-600. PubMed ID: 20454786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional MRI study of motor dysfunction in Friedreich's ataxia.
    Akhlaghi H; Corben L; Georgiou-Karistianis N; Bradshaw J; Delatycki MB; Storey E; Egan GF
    Brain Res; 2012 Aug; 1471():138-54. PubMed ID: 22771856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple components of lateral posterior parietal activation associated with cognitive set shifting.
    Asari T; Konishi S; Jimura K; Miyashita Y
    Neuroimage; 2005 Jul; 26(3):694-702. PubMed ID: 15955479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI.
    Konishi S; Nakajima K; Uchida I; Kikyo H; Kameyama M; Miyashita Y
    Brain; 1999 May; 122 ( Pt 5)():981-91. PubMed ID: 10355680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test.
    Konishi S; Kawazu M; Uchida I; Kikyo H; Asakura I; Miyashita Y
    Cereb Cortex; 1999; 9(7):745-53. PubMed ID: 10554997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prefrontal involvement in "temporal bridging" and timing movement.
    Rubia K; Overmeyer S; Taylor E; Brammer M; Williams S; Simmons A; Andrew C; Bullmore E
    Neuropsychologia; 1998 Dec; 36(12):1283-93. PubMed ID: 9863682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Context and hand posture modulate the neural dynamics of tool-object perception.
    Natraj N; Poole V; Mizelle JC; Flumini A; Borghi AM; Wheaton LA
    Neuropsychologia; 2013 Feb; 51(3):506-19. PubMed ID: 23261936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attentional set-shifting deficit in Parkinson's disease is associated with prefrontal dysfunction: an FDG-PET study.
    Sawada Y; Nishio Y; Suzuki K; Hirayama K; Takeda A; Hosokai Y; Ishioka T; Itoyama Y; Takahashi S; Fukuda H; Mori E
    PLoS One; 2012; 7(6):e38498. PubMed ID: 22685575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient activation of inferior prefrontal cortex during cognitive set shifting.
    Konishi S; Nakajima K; Uchida I; Kameyama M; Nakahara K; Sekihara K; Miyashita Y
    Nat Neurosci; 1998 May; 1(1):80-4. PubMed ID: 10195114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The brain basis of piano performance.
    Parsons LM; Sergent J; Hodges DA; Fox PT
    Neuropsychologia; 2005; 43(2):199-215. PubMed ID: 15707905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Load-dependent roles of frontal brain regions in the maintenance of working memory.
    Rypma B; Prabhakaran V; Desmond JE; Glover GH; Gabrieli JD
    Neuroimage; 1999 Feb; 9(2):216-26. PubMed ID: 9927550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans.
    Hornak J; O'Doherty J; Bramham J; Rolls ET; Morris RG; Bullock PR; Polkey CE
    J Cogn Neurosci; 2004 Apr; 16(3):463-78. PubMed ID: 15072681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The inhibition of imitative response tendencies.
    Brass M; Zysset S; von Cramon DY
    Neuroimage; 2001 Dec; 14(6):1416-23. PubMed ID: 11707097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetrical neural substrates of tactile discrimination in humans: a functional magnetic resonance imaging study.
    Harada T; Saito DN; Kashikura K; Sato T; Yonekura Y; Honda M; Sadato N
    J Neurosci; 2004 Aug; 24(34):7524-30. PubMed ID: 15329399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement preparation and execution: differential functional activation patterns after traumatic brain injury.
    Gooijers J; Beets IA; Albouy G; Beeckmans K; Michiels K; Sunaert S; Swinnen SP
    Brain; 2016 Sep; 139(Pt 9):2469-85. PubMed ID: 27435093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.