BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 10402430)

  • 61. The snf1 gene of Ustilago maydis acts as a dual regulator of cell wall degrading enzymes.
    Nadal M; Garcia-Pedrajas MD; Gold SE
    Phytopathology; 2010 Dec; 100(12):1364-72. PubMed ID: 21062173
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Unh1, an Ustilago maydis Ndt80-like protein, controls completion of tumor maturation, teliospore development, and meiosis.
    Doyle CE; Kitty Cheung HY; Spence KL; Saville BJ
    Fungal Genet Biol; 2016 Sep; 94():54-68. PubMed ID: 27397931
    [TBL] [Abstract][Full Text] [Related]  

  • 63. G proteins in Ustilago maydis: transmission of multiple signals?
    Regenfelder E; Spellig T; Hartmann A; Lauenstein S; Bölker M; Kahmann R
    EMBO J; 1997 Apr; 16(8):1934-42. PubMed ID: 9155019
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Conservation of the Ustilago maydis effector See1 in related smuts.
    Redkar A; Villajuana-Bonequi M; Doehlemann G
    Plant Signal Behav; 2015; 10(12):e1086855. PubMed ID: 26357869
    [TBL] [Abstract][Full Text] [Related]  

  • 65. An Ustilago maydis septin is required for filamentous growth in culture and for full symptom development on maize.
    Boyce KJ; Chang H; D'Souza CA; Kronstad JW
    Eukaryot Cell; 2005 Dec; 4(12):2044-56. PubMed ID: 16339722
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The mating-related loci sexM and sexP of the zygomycetous fungus Mucor mucedo and their transcriptional regulation by trisporoid pheromones.
    Wetzel J; Burmester A; Kolbe M; Wöstemeyer J
    Microbiology (Reading); 2012 Apr; 158(Pt 4):1016-1023. PubMed ID: 22262094
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ustilago maydis: how its biology relates to pathogenic development.
    Kahmann R; Kämper J
    New Phytol; 2004 Oct; 164(1):31-42. PubMed ID: 33873482
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Activation of the ustilagic acid biosynthesis gene cluster in Ustilago maydis by the C2H2 zinc finger transcription factor Rua1.
    Teichmann B; Liu L; Schink KO; Bölker M
    Appl Environ Microbiol; 2010 Apr; 76(8):2633-40. PubMed ID: 20173069
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Single-chain fusions of two unrelated homeodomain proteins trigger pathogenicity in Ustilago maydis.
    Romeis T; Kämper J; Kahmann R
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1230-4. PubMed ID: 11038599
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Purification and properties of a cruciform DNA binding protein from Ustilago maydis.
    Kotani H; Kmiec EB; Holloman WK
    Chromosoma; 1993 May; 102(5):348-54. PubMed ID: 8325166
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ustilago maydis Mating Hyphae Orient Their Growth toward Pheromone Sources.
    Snetselaar KM; Bolker M; Kahmann R
    Fungal Genet Biol; 1996 Dec; 20(4):299-312. PubMed ID: 9045760
    [TBL] [Abstract][Full Text] [Related]  

  • 72. GC-MS-Based Metabolomics for the Smut Fungus
    Phan ANT; Blank LM
    Front Mol Biosci; 2020; 7():211. PubMed ID: 32974387
    [No Abstract]   [Full Text] [Related]  

  • 73. Opsin 1 and Opsin 2 of the Corn Smut Fungus
    Panzer S; Brych A; Batschauer A; Terpitz U
    Front Microbiol; 2019; 10():735. PubMed ID: 31024506
    [TBL] [Abstract][Full Text] [Related]  

  • 74. KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake.
    Gage MJ; Bruenn J; Fischer M; Sanders D; Smith TJ
    Mol Microbiol; 2001 Aug; 41(4):775-85. PubMed ID: 11532143
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The MAP Kinase SsKpp2 Is Required for Mating/Filamentation in
    Deng YZ; Zhang B; Chang C; Wang Y; Lu S; Sun S; Zhang X; Chen B; Jiang Z
    Front Microbiol; 2018; 9():2555. PubMed ID: 30416495
    [TBL] [Abstract][Full Text] [Related]  

  • 76.
    McTaggart AR; Shivas RG; Boekhout T; Oberwinkler F; Vánky K; Pennycook SR; Begerow D
    IMA Fungus; 2016 Dec; 7(2):309-315. PubMed ID: 27990337
    [No Abstract]   [Full Text] [Related]  

  • 77. Identifying Genes Devoted to the Cell Death Process in the Gene Regulatory Network of
    Soberanes-Gutiérrez CV; Pérez-Rueda E; Ruíz-Herrera J; Galán-Vásquez E
    Front Microbiol; 2021; 12():680290. PubMed ID: 34093501
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid. Re-examination of the Ustilago maydis glycoproteins.
    Unrau P; Champ DR; Young JL; Grant CE
    J Biol Chem; 1980 Jan; 255(2):614-9. PubMed ID: 7356634
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Construction and analysis of gene co-expression network in the pathogenic fungus
    Soberanes-Gutiérrez CV; Castillo-Jiménez A; Pérez-Rueda E; Galán-Vásquez E
    Front Microbiol; 2022; 13():1048694. PubMed ID: 36569046
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Genetic Manipulation of the Brassicaceae Smut Fungus
    Plücker L; Bösch K; Geißl L; Hoffmann P; Göhre V
    J Fungi (Basel); 2021 Jan; 7(1):. PubMed ID: 33435409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.