These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 10402670)
1. Constitutive and stress-inducible expression of the endoplasmic reticulum heat shock protein 70 gene family member, immunoglobulin-binding protein (BiP), during Xenopus laevis early development. Miskovic D; Heikkila JJ Dev Genet; 1999; 25(1):31-9. PubMed ID: 10402670 [TBL] [Abstract][Full Text] [Related]
2. Examination of the stress-induced expression of the collagen binding heat shock protein, hsp47, in Xenopus laevis cultured cells and embryos. Hamilton AM; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2006 Jan; 143(1):133-41. PubMed ID: 16387521 [TBL] [Abstract][Full Text] [Related]
3. Spatial pattern of constitutive and heat shock-induced expression of the small heat shock protein gene family, Hsp30, in Xenopus laevis tailbud embryos. Lang L; Miskovic D; Fernando P; Heikkila JJ Dev Genet; 1999; 25(4):365-74. PubMed ID: 10570468 [TBL] [Abstract][Full Text] [Related]
4. Involvement of differential gene expression and mRNA stability in the developmental regulation of the hsp 30 gene family in heat-shocked Xenopus laevis embryos. Ohan NW; Heikkila JJ Dev Genet; 1995; 17(2):176-84. PubMed ID: 7586758 [TBL] [Abstract][Full Text] [Related]
5. Effect of histone deacetylase inhibitors on heat shock protein gene expression during Xenopus development. Ovakim DH; Heikkila JJ Genesis; 2003 Jun; 36(2):88-96. PubMed ID: 12820170 [TBL] [Abstract][Full Text] [Related]
6. Identification of members of the HSP30 small heat shock protein family and characterization of their developmental regulation in heat-shocked Xenopus laevis embryos. Tam Y; Heikkila JJ Dev Genet; 1995; 17(4):331-9. PubMed ID: 8641051 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the expression and function of the small heat shock protein gene, hsp27, in Xenopus laevis embryos. Tuttle AM; Gauley J; Chan N; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2007 May; 147(1):112-21. PubMed ID: 17267255 [TBL] [Abstract][Full Text] [Related]
8. Examination of the expression of the heat shock protein gene, hsp110, in Xenopus laevis cultured cells and embryos. Gauley J; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2006 Oct; 145(2):225-34. PubMed ID: 16861019 [TBL] [Abstract][Full Text] [Related]
9. Distinct stress-inducible and developmentally regulated heat shock transcription factors in Xenopus oocytes. Gordon S; Bharadwaj S; Hnatov A; Ali A; Ovsenek N Dev Biol; 1997 Jan; 181(1):47-63. PubMed ID: 9015264 [TBL] [Abstract][Full Text] [Related]
10. adapt78, a stress-inducible mRNA, is related to the glucose-regulated protein family of genes. Leahy KP; Davies KJ; Dull M; Kort JJ; Lawrence KW; Crawford DR Arch Biochem Biophys; 1999 Aug; 368(1):67-74. PubMed ID: 10415113 [TBL] [Abstract][Full Text] [Related]
11. Down-regulation of the endoplasmic reticulum chaperone GRP78/BiP by vomitoxin (Deoxynivalenol). Yang GH; Li S; Pestka JJ Toxicol Appl Pharmacol; 2000 Feb; 162(3):207-17. PubMed ID: 10652249 [TBL] [Abstract][Full Text] [Related]
12. hsp47 and hsp70 gene expression is differentially regulated in a stress- and tissue-specific manner in zebrafish embryos. Lele Z; Engel S; Krone PH Dev Genet; 1997; 21(2):123-33. PubMed ID: 9332971 [TBL] [Abstract][Full Text] [Related]
13. Developmental analysis of activin-like kinase receptor-4 (ALK4) expression in Xenopus laevis. Chen Y; Whitaker LL; Ramsdell AF Dev Dyn; 2005 Feb; 232(2):393-8. PubMed ID: 15614766 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells. Voyer J; Heikkila JJ Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):253-61. PubMed ID: 18675372 [TBL] [Abstract][Full Text] [Related]
16. Hormonal regulation of protein disulfide isomerase and chaperone synthesis in the rat exocrine pancreas. Hensel G; Assmann V; Kern HF Eur J Cell Biol; 1994 Apr; 63(2):208-18. PubMed ID: 7915986 [TBL] [Abstract][Full Text] [Related]
17. Response of VEGF expression to amino acid deprivation and inducers of endoplasmic reticulum stress. Abcouwer SF; Marjon PL; Loper RK; Vander Jagt DL Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2791-8. PubMed ID: 12147617 [TBL] [Abstract][Full Text] [Related]
18. Sequential interaction of the chaperones BiP and GRP94 with immunoglobulin chains in the endoplasmic reticulum. Melnick J; Dul JL; Argon Y Nature; 1994 Aug; 370(6488):373-5. PubMed ID: 7913987 [TBL] [Abstract][Full Text] [Related]
19. Localization of constitutive and hyperthermia-inducible heat shock mRNAs (hsc70 and hsp70) in the rabbit cerebellum and brainstem by non-radioactive in situ hybridization. Foster JA; Rush SJ; Brown IR J Neurosci Res; 1995 Aug; 41(5):603-12. PubMed ID: 7563240 [TBL] [Abstract][Full Text] [Related]
20. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Katayama T; Imaizumi K; Sato N; Miyoshi K; Kudo T; Hitomi J; Morihara T; Yoneda T; Gomi F; Mori Y; Nakano Y; Takeda J; Tsuda T; Itoyama Y; Murayama O; Takashima A; St George-Hyslop P; Takeda M; Tohyama M Nat Cell Biol; 1999 Dec; 1(8):479-85. PubMed ID: 10587643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]