These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 10403384)
1. Introducing transglycosylation activity in a liquefying alpha-amylase. Saab-Rincón G; del-Río G; Santamaría RI; López-Munguía A; Soberón X FEBS Lett; 1999 Jun; 453(1-2):100-6. PubMed ID: 10403384 [TBL] [Abstract][Full Text] [Related]
2. Role of the glutamate 332 residue in the transglycosylation activity of ThermusMaltogenic amylase. Kim TJ; Park CS; Cho HY; Cha SS; Kim JS; Lee SB; Moon TW; Kim JW; Oh BH; Park KH Biochemistry; 2000 Jun; 39(23):6773-80. PubMed ID: 10841756 [TBL] [Abstract][Full Text] [Related]
3. C-terminal truncations of a thermostable Bacillus stearothermophilus alpha-amylase. Vihinen M; Peltonen T; Iitiä A; Suominen I; Mäntsälä P Protein Eng; 1994 Oct; 7(10):1255-9. PubMed ID: 7855141 [TBL] [Abstract][Full Text] [Related]
5. Alpha-amylase from Bacillus licheniformis mutants near to the catalytic site: effects on hydrolytic and transglycosylation activity. Rivera MH; López-Munguía A; Soberón X; Saab-Rincón G Protein Eng; 2003 Jul; 16(7):505-14. PubMed ID: 12915728 [TBL] [Abstract][Full Text] [Related]
6. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at alpha-(1----4)- and alpha-(1----6)-glucosidic linkages. Takata H; Kuriki T; Okada S; Takesada Y; Iizuka M; Minamiura N; Imanaka T J Biol Chem; 1992 Sep; 267(26):18447-52. PubMed ID: 1388153 [TBL] [Abstract][Full Text] [Related]
7. Role of Val289 residue in the alpha-amylase of Bacillus amyloliquefaciens MTCC 610: an analysis by site directed mutagenesis. Priyadharshini R; Hemalatha D; Gunasekaran P J Microbiol Biotechnol; 2010 Mar; 20(3):563-8. PubMed ID: 20372028 [TBL] [Abstract][Full Text] [Related]
8. Enhanced maltose production through mutagenesis of acceptor binding subsite +2 in Bacillus stearothermophilus maltogenic amylase. Sun Y; Duan X; Wang L; Wu J J Biotechnol; 2016 Jan; 217():53-61. PubMed ID: 26597712 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the active center of Bacillus stearothermophilus neopullulanase. Kuriki T; Takata H; Okada S; Imanaka T J Bacteriol; 1991 Oct; 173(19):6147-52. PubMed ID: 1917847 [TBL] [Abstract][Full Text] [Related]
10. Conversion of neopullulanase-alpha-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanse-type enzyme. Ibuka A; Tonozuka T; Matsuzawa H; Sakai H J Biochem; 1998 Feb; 123(2):275-82. PubMed ID: 9538203 [TBL] [Abstract][Full Text] [Related]
11. Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase. Holm L; Koivula AK; Lehtovaara PM; Hemminki A; Knowles JK Protein Eng; 1990 Jan; 3(3):181-91. PubMed ID: 2330367 [TBL] [Abstract][Full Text] [Related]
12. Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus alpha-amylase. Takase K Eur J Biochem; 1993 Feb; 211(3):899-902. PubMed ID: 8436143 [TBL] [Abstract][Full Text] [Related]
13. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric constraint and hydrophobicity in active center. Kuriki T; Kaneko H; Yanase M; Takata H; Shimada J; Handa S; Takada T; Umeyama H; Okada S J Biol Chem; 1996 Jul; 271(29):17321-9. PubMed ID: 8663322 [TBL] [Abstract][Full Text] [Related]
14. Introducing transglycosylation activity in Bacillus licheniformis α-amylase by replacement of His235 with Glu. Tran PL; Cha HJ; Lee JS; Park SH; Woo EJ; Park KH Biochem Biophys Res Commun; 2014 Sep; 451(4):541-7. PubMed ID: 25117441 [TBL] [Abstract][Full Text] [Related]
15. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Cha HJ; Yoon HG; Kim YW; Lee HS; Kim JW; Kweon KS; Oh BH; Park KH Eur J Biochem; 1998 Apr; 253(1):251-62. PubMed ID: 9578484 [TBL] [Abstract][Full Text] [Related]
16. Complete nucleotide sequence of a thermophilic alpha-amylase gene: homology between prokaryotic and eukaryotic alpha-amylases at the active sites. Ihara H; Sasaki T; Tsuboi A; Yamagata H; Tsukagoshi N; Udaka S J Biochem; 1985 Jul; 98(1):95-103. PubMed ID: 3876333 [TBL] [Abstract][Full Text] [Related]
17. Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Kamasaka H; Sugimoto K; Takata H; Nishimura T; Kuriki T Appl Environ Microbiol; 2002 Apr; 68(4):1658-64. PubMed ID: 11916682 [TBL] [Abstract][Full Text] [Related]
18. Efficient production of Bacillus stearothermophilus alpha-amylase in Bacillus brevis by altering its signal peptide. Yamaguchi K; Ueda M; Udaka S Biosci Biotechnol Biochem; 1993 Aug; 57(8):1384-6. PubMed ID: 7764020 [TBL] [Abstract][Full Text] [Related]
19. Thermostabilization by proline substitution in an alkaline, liquefying alpha-amylase from Bacillus sp. strain KSM-1378. Igarashi K; Ozawa T; Ikawakitayama K; Hayashi Y; Araki H; Endo K; Hagihara H; Ozaki K; Kawai S; Ito S Biosci Biotechnol Biochem; 1999 Sep; 63(9):1535-40. PubMed ID: 10540739 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of the alcoholytic activity of alpha-amylase AmyA from Thermotoga maritima MSB8 (DSM 3109) by site-directed mutagenesis. Damián-Almazo JY; Moreno A; López-Munguía A; Soberón X; González-Muñoz F; Saab-Rincón G Appl Environ Microbiol; 2008 Aug; 74(16):5168-77. PubMed ID: 18552192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]