These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 10403403)
1. Mechanism of cytochrome P450 reductase from the house fly: evidence for an FMN semiquinone as electron donor. Murataliev MB; Feyereisen R FEBS Lett; 1999 Jun; 453(1-2):201-4. PubMed ID: 10403403 [TBL] [Abstract][Full Text] [Related]
2. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
3. Kinetic mechanism of cytochrome P450 reductase from the house fly (Musca domestica). Murataliev MB; Ariño A; Guzov VM; Feyereisen R Insect Biochem Mol Biol; 1999 Mar; 29(3):233-42. PubMed ID: 10319436 [TBL] [Abstract][Full Text] [Related]
4. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain. Murataliev MB; Klein M; Fulco A; Feyereisen R Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888 [TBL] [Abstract][Full Text] [Related]
5. Kinetic, spectroscopic and thermodynamic characterization of the Mycobacterium tuberculosis adrenodoxin reductase homologue FprA. McLean KJ; Scrutton NS; Munro AW Biochem J; 2003 Jun; 372(Pt 2):317-27. PubMed ID: 12614197 [TBL] [Abstract][Full Text] [Related]
6. Interaction of NADP(H) with oxidized and reduced P450 reductase during catalysis. Studies with nucleotide analogues. Murataliev MB; Feyereisen R Biochemistry; 2000 May; 39(17):5066-74. PubMed ID: 10819972 [TBL] [Abstract][Full Text] [Related]
7. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase. Yamamoto K; Kimura S; Shiro Y; Iyanagi T Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330 [TBL] [Abstract][Full Text] [Related]
8. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone. Rwere F; Xia C; Im S; Haque MM; Stuehr DJ; Waskell L; Kim JJ J Biol Chem; 2016 Jul; 291(28):14639-61. PubMed ID: 27189945 [TBL] [Abstract][Full Text] [Related]
9. A 31P-nuclear-magnetic-resonance study of NADPH-cytochrome-P-450 reductase and of the Azotobacter flavodoxin/ferredoxin-NADP+ reductase complex. Bonants PJ; Müller F; Vervoort J; Edmondson DE Eur J Biochem; 1990 Jul; 190(3):531-7. PubMed ID: 2115440 [TBL] [Abstract][Full Text] [Related]
10. Determination of the redox properties of human NADPH-cytochrome P450 reductase. Munro AW; Noble MA; Robledo L; Daff SN; Chapman SK Biochemistry; 2001 Feb; 40(7):1956-63. PubMed ID: 11329262 [TBL] [Abstract][Full Text] [Related]
11. Role of Ser457 of NADPH-cytochrome P450 oxidoreductase in catalysis and control of FAD oxidation-reduction potential. Shen AL; Kasper CB Biochemistry; 1996 Jul; 35(29):9451-9. PubMed ID: 8755724 [TBL] [Abstract][Full Text] [Related]
12. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module. Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732 [TBL] [Abstract][Full Text] [Related]
13. Expression of house fly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system. Andersen JF; Utermohlen JG; Feyereisen R Biochemistry; 1994 Mar; 33(8):2171-7. PubMed ID: 8117673 [TBL] [Abstract][Full Text] [Related]
14. Probing electron transfer in flavocytochrome P-450 BM3 and its component domains. Munro AW; Daff S; Coggins JR; Lindsay JG; Chapman SK Eur J Biochem; 1996 Jul; 239(2):403-9. PubMed ID: 8706747 [TBL] [Abstract][Full Text] [Related]
15. NADPH-cytochrome P-450 reductase. Physical properties and redox behavior in the absence of the FAD moiety. Kurzban GP; Howarth J; Palmer G; Strobel HW J Biol Chem; 1990 Jul; 265(21):12272-9. PubMed ID: 2115516 [TBL] [Abstract][Full Text] [Related]
16. Differential redox and electron-transfer properties of purified yeast, plant and human NADPH-cytochrome P-450 reductases highly modulate cytochrome P-450 activities. Louërat-Oriou B; Perret A; Pompon D Eur J Biochem; 1998 Dec; 258(3):1040-9. PubMed ID: 9990323 [TBL] [Abstract][Full Text] [Related]
17. A second FMN binding site in yeast NADPH-cytochrome P450 reductase suggests a mechanism of electron transfer by diflavin reductases. Lamb DC; Kim Y; Yermalitskaya LV; Yermalitsky VN; Lepesheva GI; Kelly SL; Waterman MR; Podust LM Structure; 2006 Jan; 14(1):51-61. PubMed ID: 16407065 [TBL] [Abstract][Full Text] [Related]
18. NADPH-flavodoxin reductase and flavodoxin from Escherichia coli: characteristics as a soluble microsomal P450 reductase. Jenkins CM; Waterman MR Biochemistry; 1998 Apr; 37(17):6106-13. PubMed ID: 9558349 [TBL] [Abstract][Full Text] [Related]
19. Adrenodoxin reductase and adrenodoxin. Mechanisms of reduction of ferricyanide and cytochrome c. Lambeth JD; Kamin H J Biol Chem; 1977 May; 252(9):2908-17. PubMed ID: 16008 [TBL] [Abstract][Full Text] [Related]
20. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase. Roitel O; Scrutton NS; Munro AW Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]