BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10403528)

  • 1. Effects of desferrithiocin and its derivatives on peripheral iron and striatal dopamine and 5-hydroxytryptamine metabolism in the ferrocene-loaded rat.
    Dexter DT; Ward RJ; Florence A; Jenner P; Crichton RR
    Biochem Pharmacol; 1999 Jul; 58(1):151-5. PubMed ID: 10403528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An animal model of iron overload and its application to study hepatic ferritin iron mobilization by chelators.
    Longueville A; Crichton RR
    Biochem Pharmacol; 1986 Nov; 35(21):3669-78. PubMed ID: 3778498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of tridentate iron chelators: from desferrithiocin to ICL670.
    Nick H; Acklin P; Lattmann R; Buehlmayer P; Hauffe S; Schupp J; Alberti D
    Curr Med Chem; 2003 Jun; 10(12):1065-76. PubMed ID: 12678677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desferrithiocin is an effective iron chelator in vivo and in vitro but ferrithiocin is toxic.
    Baker E; Wong A; Peter H; Jacobs A
    Br J Haematol; 1992 Jul; 81(3):424-31. PubMed ID: 1340769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Desferrithiocin is a more potent antineoplastic agent than desferrioxamine.
    Kicic A; Chua AC; Baker E
    Br J Pharmacol; 2002 Mar; 135(6):1393-402. PubMed ID: 11906952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationships among desazadesferrithiocin analogues.
    Bergeron RJ; Wiegand J; McManis JS; Weimar WR; Huang G
    Adv Exp Med Biol; 2002; 509():167-84. PubMed ID: 12572994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of desferrithiocin and its synthetic analogues as orally effective iron chelators.
    Bergeron RJ; Wiegand J; Dionis JB; Egli-Karmakka M; Frei J; Huxley-Tencer A; Peter HH
    J Med Chem; 1991 Jul; 34(7):2072-8. PubMed ID: 2066978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substituent effects on desferrithiocin and desferrithiocin analogue iron-clearing and toxicity profiles.
    Bergeron RJ; Wiegand J; Bharti N; McManis JS
    J Med Chem; 2012 Aug; 55(16):7090-103. PubMed ID: 22889170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desferrithiocin and desferrioxamine B. Cellular pharmacology and storage iron mobilization.
    Jin Y; Baquet A; Florence A; Crichton RR; Schneider YJ
    Biochem Pharmacol; 1989 Oct; 38(19):3233-40. PubMed ID: 2818622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of catechol-O-methyltransferase (COMT) as well as tyrosine and tryptophan hydroxylase by the orally active iron chelator, 1,2-dimethyl-3-hydroxypyridin-4-one (L1, CP20), in rat brain in vivo.
    Waldmeier PC; Buchle AM; Steulet AF
    Biochem Pharmacol; 1993 Jun; 45(12):2417-24. PubMed ID: 7687131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of in vivo iron mobilization by chelators in the ferrocene-loaded rat.
    Florence A; Ward RJ; Peters TJ; Crichton RR
    Biochem Pharmacol; 1992 Sep; 44(6):1023-7. PubMed ID: 1417929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The desferrithiocin (DFT) class of iron chelators: potential as antineoplastic agents.
    Kicic A; Chua AC; Baker E
    Anticancer Drug Des; 2001; 16(4-5):195-207. PubMed ID: 12049478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold Based Search on the Desferithiocin Archetype.
    Shyam M; Dev A; Sinha BN; Jayaprakash V
    Mini Rev Med Chem; 2019; 19(19):1564-1576. PubMed ID: 30827237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The desferrithiocin pharmacophore.
    Bergeron RJ; Liu CZ; McManis JS; Xia MX; Algee SE; Wiegand J
    J Med Chem; 1994 May; 37(10):1411-7. PubMed ID: 8182699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Desferrithiocin: a search for clinically effective iron chelators.
    Bergeron RJ; Wiegand J; McManis JS; Bharti N
    J Med Chem; 2014 Nov; 57(22):9259-91. PubMed ID: 25207964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the desferrithiocin pharmacophore as a vector for hydroxamates.
    Bergeron RJ; McManis JS; Bussenius J; Brittenham GM; Wiegand J
    J Med Chem; 1999 Jul; 42(15):2881-6. PubMed ID: 10425097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of a novel oral iron chelator: 1-(N-Acetyl-6-Aminohexyl)-3-Hydroxy-2-Methylpyridin-4-one.
    Pangjit K; Banjerdpongchai R; Phisalaphong C; Fucharoen S; Xie YY; Lu ZD; Hider RC; Srichairatanakool S
    J Pharm Pharmacol; 2015 May; 67(5):703-13. PubMed ID: 25627251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desferrithiocin analogues and nephrotoxicity.
    Bergeron RJ; Wiegand J; McManis JS; Bharti N; Singh S
    J Med Chem; 2008 Oct; 51(19):5993-6004. PubMed ID: 18788724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of iron from (3,5,5-trimethylhexanoyl)ferrocene in rats. A dietary model for severe iron overload.
    Nielsen P; Heinrich HC
    Biochem Pharmacol; 1993 Jan; 45(2):385-91. PubMed ID: 8435091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The design of orally active iron chelators.
    Hider RC; Zhou T
    Ann N Y Acad Sci; 2005; 1054():141-54. PubMed ID: 16339660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.