BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10403756)

  • 1. Lysophosphatidylcholine, a metabolite which accumulates early in myocardium during ischemia, reduces gap junctional coupling in cardiac cells.
    Daleau P
    J Mol Cell Cardiol; 1999 Jul; 31(7):1391-401. PubMed ID: 10403756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid onset of lysophosphatidylcholine-induced modification of whole cell cardiac sodium current kinetics.
    Shander GS; Undrovinas AI; Makielski JC
    J Mol Cell Cardiol; 1996 Apr; 28(4):743-53. PubMed ID: 8732502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of antiarrhythmic agents on junctional resistance of guinea pig ventricular cell pairs.
    Daleau P
    J Pharmacol Exp Ther; 1998 Mar; 284(3):1174-9. PubMed ID: 9495880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol protects against lysophosphatidylcholine-induced uncoupling of cardiac cell pairs.
    Daleau P
    Pflugers Arch; 2002 Oct; 445(1):55-9. PubMed ID: 12397387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cellular electrophysiological basis of proarrhythmic and antiarrhythmic effects of ischemia-related lipid metabolites].
    Arita M; Sato T; Ishida H; Nakazawa H
    Rinsho Byori; 1993 Apr; 41(4):401-8. PubMed ID: 8350500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ischemia-induced arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation.
    Cascio WE; Yang H; Muller-Borer BJ; Johnson TA
    J Electrocardiol; 2005 Oct; 38(4 Suppl):55-9. PubMed ID: 16226075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis.
    De Groot JR; Coronel R
    Cardiovasc Res; 2004 May; 62(2):323-34. PubMed ID: 15094352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of the depressant effects of lysophosphatidylcholine on contractile properties of cultured cardiac myocytes by acidosis and superoxide radical.
    Sedlis SP; Sequeira JM; Altszuler HM
    J Lab Clin Med; 1990 Feb; 115(2):203-16. PubMed ID: 2153746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices.
    Pakhotin P; Verkhratsky A
    Mol Cell Neurosci; 2005 Jan; 28(1):79-84. PubMed ID: 15607943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated simulated ischemia and protection against gap junctional uncoupling.
    Sundset R; Ytrehus K; Zhang Y; Saffitz JE; Yamada KA
    Cell Commun Adhes; 2007; 14(5):239-49. PubMed ID: 18163233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical evidence that connexin-36 forms functional gap junction channels between pancreatic mouse beta-cells.
    Moreno AP; Berthoud VM; Pérez-Palacios G; Pérez-Armendariz EM
    Am J Physiol Endocrinol Metab; 2005 May; 288(5):E948-56. PubMed ID: 15625088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of lysophosphatidylcholine on the pacemaker current I(f) of sheep cardial Purkinje fibers in ischemia-like condition].
    Hu YM; Zhang Z; Gao RB; Xu YQ
    Sheng Li Xue Bao; 1997 Oct; 49(5):513-20. PubMed ID: 9813489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap junctional uncoupling plays a trigger role in the antiarrhythmic effect of ischaemic preconditioning.
    Papp R; Gönczi M; Kovács M; Seprényi G; Végh A
    Cardiovasc Res; 2007 Jun; 74(3):396-405. PubMed ID: 17362896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy.
    Eloff BC; Gilat E; Wan X; Rosenbaum DS
    Circulation; 2003 Dec; 108(25):3157-63. PubMed ID: 14656916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between gap-junctional conductance and conduction velocity in mammalian myocardium.
    Dhillon PS; Gray R; Kojodjojo P; Jabr R; Chowdhury R; Fry CH; Peters NS
    Circ Arrhythm Electrophysiol; 2013 Dec; 6(6):1208-14. PubMed ID: 24134868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrocarbon chain length-dependent antagonism of acylcarnitines to the depressant effect of lysophosphatidylcholine on cardiac sodium current.
    Sato T; Ishida H; Nakazawa H; Arita M
    J Mol Cell Cardiol; 1996 Oct; 28(10):2183-94. PubMed ID: 8930813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium gating of cardiac gap junction channels.
    Matsuda H; Kurata Y; Oka C; Matsuoka S; Noma A
    Prog Biophys Mol Biol; 2010 Sep; 103(1):102-10. PubMed ID: 20553744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiologic actions and interactions between lysophosphatidylcholine and lidocaine in the nonsteady state: the match between multiphasic arrhythmogenic mechanisms and multiple drug effects in cardiac Purkinje fibers.
    Sawicki GJ; Arnsdorf MF
    J Pharmacol Exp Ther; 1985 Dec; 235(3):829-38. PubMed ID: 4078734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pravastatin attenuates cardiac dysfunction induced by lysophosphatidylcholine in isolated rat hearts.
    Li L; Yao Y; Wang H; Ren Y; Ma L; Yan J; Gao C
    Eur J Pharmacol; 2010 Aug; 640(1-3):139-42. PubMed ID: 20471973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Immunohistochemical study of Cx43 dephosphorylation in human left ventricular myocardium suffered by acute ischemia].
    Zhang SW; Liu SX; Deng LB
    Fa Yi Xue Za Zhi; 2004; 20(3):136-9, 142. PubMed ID: 15495803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.