These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 10403756)

  • 1. Lysophosphatidylcholine, a metabolite which accumulates early in myocardium during ischemia, reduces gap junctional coupling in cardiac cells.
    Daleau P
    J Mol Cell Cardiol; 1999 Jul; 31(7):1391-401. PubMed ID: 10403756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid onset of lysophosphatidylcholine-induced modification of whole cell cardiac sodium current kinetics.
    Shander GS; Undrovinas AI; Makielski JC
    J Mol Cell Cardiol; 1996 Apr; 28(4):743-53. PubMed ID: 8732502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of antiarrhythmic agents on junctional resistance of guinea pig ventricular cell pairs.
    Daleau P
    J Pharmacol Exp Ther; 1998 Mar; 284(3):1174-9. PubMed ID: 9495880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ethanol protects against lysophosphatidylcholine-induced uncoupling of cardiac cell pairs.
    Daleau P
    Pflugers Arch; 2002 Oct; 445(1):55-9. PubMed ID: 12397387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cellular electrophysiological basis of proarrhythmic and antiarrhythmic effects of ischemia-related lipid metabolites].
    Arita M; Sato T; Ishida H; Nakazawa H
    Rinsho Byori; 1993 Apr; 41(4):401-8. PubMed ID: 8350500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ischemia-induced arrhythmia: the role of connexins, gap junctions, and attendant changes in impulse propagation.
    Cascio WE; Yang H; Muller-Borer BJ; Johnson TA
    J Electrocardiol; 2005 Oct; 38(4 Suppl):55-9. PubMed ID: 16226075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis.
    De Groot JR; Coronel R
    Cardiovasc Res; 2004 May; 62(2):323-34. PubMed ID: 15094352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potentiation of the depressant effects of lysophosphatidylcholine on contractile properties of cultured cardiac myocytes by acidosis and superoxide radical.
    Sedlis SP; Sequeira JM; Altszuler HM
    J Lab Clin Med; 1990 Feb; 115(2):203-16. PubMed ID: 2153746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices.
    Pakhotin P; Verkhratsky A
    Mol Cell Neurosci; 2005 Jan; 28(1):79-84. PubMed ID: 15607943
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Repeated simulated ischemia and protection against gap junctional uncoupling.
    Sundset R; Ytrehus K; Zhang Y; Saffitz JE; Yamada KA
    Cell Commun Adhes; 2007; 14(5):239-49. PubMed ID: 18163233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical evidence that connexin-36 forms functional gap junction channels between pancreatic mouse beta-cells.
    Moreno AP; Berthoud VM; Pérez-Palacios G; Pérez-Armendariz EM
    Am J Physiol Endocrinol Metab; 2005 May; 288(5):E948-56. PubMed ID: 15625088
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of lysophosphatidylcholine on the pacemaker current I(f) of sheep cardial Purkinje fibers in ischemia-like condition].
    Hu YM; Zhang Z; Gao RB; Xu YQ
    Sheng Li Xue Bao; 1997 Oct; 49(5):513-20. PubMed ID: 9813489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gap junctional uncoupling plays a trigger role in the antiarrhythmic effect of ischaemic preconditioning.
    Papp R; Gönczi M; Kovács M; Seprényi G; Végh A
    Cardiovasc Res; 2007 Jun; 74(3):396-405. PubMed ID: 17362896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological modulation of cardiac gap junctions to enhance cardiac conduction: evidence supporting a novel target for antiarrhythmic therapy.
    Eloff BC; Gilat E; Wan X; Rosenbaum DS
    Circulation; 2003 Dec; 108(25):3157-63. PubMed ID: 14656916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between gap-junctional conductance and conduction velocity in mammalian myocardium.
    Dhillon PS; Gray R; Kojodjojo P; Jabr R; Chowdhury R; Fry CH; Peters NS
    Circ Arrhythm Electrophysiol; 2013 Dec; 6(6):1208-14. PubMed ID: 24134868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrocarbon chain length-dependent antagonism of acylcarnitines to the depressant effect of lysophosphatidylcholine on cardiac sodium current.
    Sato T; Ishida H; Nakazawa H; Arita M
    J Mol Cell Cardiol; 1996 Oct; 28(10):2183-94. PubMed ID: 8930813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium gating of cardiac gap junction channels.
    Matsuda H; Kurata Y; Oka C; Matsuoka S; Noma A
    Prog Biophys Mol Biol; 2010 Sep; 103(1):102-10. PubMed ID: 20553744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiologic actions and interactions between lysophosphatidylcholine and lidocaine in the nonsteady state: the match between multiphasic arrhythmogenic mechanisms and multiple drug effects in cardiac Purkinje fibers.
    Sawicki GJ; Arnsdorf MF
    J Pharmacol Exp Ther; 1985 Dec; 235(3):829-38. PubMed ID: 4078734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pravastatin attenuates cardiac dysfunction induced by lysophosphatidylcholine in isolated rat hearts.
    Li L; Yao Y; Wang H; Ren Y; Ma L; Yan J; Gao C
    Eur J Pharmacol; 2010 Aug; 640(1-3):139-42. PubMed ID: 20471973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Immunohistochemical study of Cx43 dephosphorylation in human left ventricular myocardium suffered by acute ischemia].
    Zhang SW; Liu SX; Deng LB
    Fa Yi Xue Za Zhi; 2004; 20(3):136-9, 142. PubMed ID: 15495803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.