BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10403798)

  • 1. Multiple splicing variants of cdc25B regulate G2/M progression.
    Forrest AR; McCormack AK; DeSouza CP; Sinnamon JM; Tonks ID; Hayward NK; Ellem KA; Gabrielli BG
    Biochem Biophys Res Commun; 1999 Jul; 260(2):510-5. PubMed ID: 10403798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative splicing of the human CDC25B tyrosine phosphatase. Possible implications for growth control?
    Baldin V; Cans C; Superti-Furga G; Ducommun B
    Oncogene; 1997 May; 14(20):2485-95. PubMed ID: 9188863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet light-induced G2 phase cell cycle checkpoint blocks cdc25-dependent progression into mitosis.
    Gabrielli BG; Clark JM; McCormack AK; Ellem KA
    Oncogene; 1997 Aug; 15(7):749-58. PubMed ID: 9266961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperphosphorylation of the N-terminal domain of Cdc25 regulates activity toward cyclin B1/Cdc2 but not cyclin A/Cdk2.
    Gabrielli BG; Clark JM; McCormack AK; Ellem KA
    J Biol Chem; 1997 Nov; 272(45):28607-14. PubMed ID: 9353326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cdc25B phosphatase is essential for the G2/M phase transition in human cells.
    Lammer C; Wagerer S; Saffrich R; Mertens D; Ansorge W; Hoffmann I
    J Cell Sci; 1998 Aug; 111 ( Pt 16)():2445-53. PubMed ID: 9683638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of N-terminally truncated stable nuclear isoforms of CDC25B that are specifically involved in G2/M checkpoint recovery.
    Jullien D; Bugler B; Dozier C; Cazales M; Ducommun B
    Cancer Res; 2011 Mar; 71(5):1968-77. PubMed ID: 21363925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cdc25B activity is regulated by 14-3-3.
    Forrest A; Gabrielli B
    Oncogene; 2001 Jul; 20(32):4393-401. PubMed ID: 11466620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell cycle dependent subcellular distribution of Cdc25B subtypes.
    Woo ES; Rice RL; Lazo JS
    Oncogene; 1999 Apr; 18(17):2770-6. PubMed ID: 10348352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisense phosphorothioate oligonucleotides specifically down-regulate cdc25B causing S-phase delay and persistent antiproliferative effects.
    Garner-Hamrick PA; Fisher C
    Int J Cancer; 1998 May; 76(5):720-8. PubMed ID: 9610732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle.
    Reynolds RA; Yem AW; Wolfe CL; Deibel MR; Chidester CG; Watenpaugh KD
    J Mol Biol; 1999 Oct; 293(3):559-68. PubMed ID: 10543950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cdc25B and Cdc25C differ markedly in their properties as initiators of mitosis.
    Karlsson C; Katich S; Hagting A; Hoffmann I; Pines J
    J Cell Biol; 1999 Aug; 146(3):573-84. PubMed ID: 10444066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of CDC25B overrides radiation-induced G2-M arrest and results in increased apoptosis in esophageal cancer cells.
    Miyata H; Doki Y; Yamamoto H; Kishi K; Takemoto H; Fujiwara Y; Yasuda T; Yano M; Inoue M; Shiozaki H; Weinstein IB; Monden M
    Cancer Res; 2001 Apr; 61(7):3188-93. PubMed ID: 11306507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a Novel Nonradioisotopic Assay and Cdc25B Overexpression Cell Lines for Use in Screening for Cdc25B Inhibitors.
    Ha GS; Lee CM; Kim CW
    Yonsei Med J; 2018 Oct; 59(8):995-1003. PubMed ID: 30187708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cdc25 cell cycle-activating phosphatases and c-myc expression in human non-Hodgkin's lymphomas.
    Hernández S; Hernández L; Beà S; Cazorla M; Fernández PL; Nadal A; Muntané J; Mallofré C; Montserrat E; Cardesa A; Campo E
    Cancer Res; 1998 Apr; 58(8):1762-7. PubMed ID: 9563496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miR-152 inhibits proliferation of human endometrial cancer cells via inducing G2/M phase arrest by suppressing CDC25B expression.
    Xie D; Liang Y; Su Y; An Y; Qu P
    Biomed Pharmacother; 2018 Mar; 99():299-305. PubMed ID: 29353204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of CDC25A and CDC25B in head and neck cancers.
    Gasparotto D; Maestro R; Piccinin S; Vukosavljevic T; Barzan L; Sulfaro S; Boiocchi M
    Cancer Res; 1997 Jun; 57(12):2366-8. PubMed ID: 9192810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of CDC25 phosphatases splice variants in human breast cancer cells.
    Albert H; Santos S; Battaglia E; Brito M; Monteiro C; Bagrel D
    Clin Chem Lab Med; 2011 Oct; 49(10):1707-14. PubMed ID: 21675940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of Cdc25B localisation and nuclear export during the cell cycle and in response to stress.
    Lindqvist A; Källström H; Karlsson Rosenthal C
    J Cell Sci; 2004 Oct; 117(Pt 21):4979-90. PubMed ID: 15456846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteasome-dependent degradation of human CDC25B phosphatase.
    Cans C; Ducommun B; Baldin V
    Mol Biol Rep; 1999 Apr; 26(1-2):53-7. PubMed ID: 10363647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytoplasmic accumulation of cdc25B phosphatase in mitosis triggers centrosomal microtubule nucleation in HeLa cells.
    Gabrielli BG; De Souza CP; Tonks ID; Clark JM; Hayward NK; Ellem KA
    J Cell Sci; 1996 May; 109 ( Pt 5)():1081-93. PubMed ID: 8743955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.