BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10404747)

  • 1. Localization accuracy of AC-PC line and functional pallidal target using BRW stereotactic implementation system and axial CT scanning. An experimental study.
    Rampini P; Egidi M; Zavanone M; Orsi M; Farabola M; Sina C
    J Neurosurg Sci; 1998 Dec; 42(4):195-201. PubMed ID: 10404747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental study to evaluate the accuracy of diencephalic and pallidal target localization using the Brown-Roberts-Wells stereotactic system and unreformatted axial GE8800 CT scanning.
    Whittle IR; O'Sullivan M; Ironside JW; Sellar R
    Br J Neurosurg; 1994; 8(1):63-72. PubMed ID: 8011196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CT-target determination in postero-ventral pallidotomy: a universal method. Technical note.
    Spiegelmann R; Gofman J
    Acta Neurochir (Wien); 1996; 138(6):732-5; discussion 736. PubMed ID: 8836290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing accuracy in magnetic resonance imaging-guided stereotaxis: a technique with validation based on the anterior commissure-posterior commissure line.
    diPierro CG; Francel PC; Jackson TR; Kamiryo T; Laws ER
    J Neurosurg; 1999 Jan; 90(1):94-100. PubMed ID: 10413161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of the Brown-Roberts-Wells stereotactic frame for functional neurosurgery.
    Hadley MN; Shetter AG; Amos MR
    Appl Neurophysiol; 1985; 48(1-6):61-8. PubMed ID: 3915673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of thalamic CT-stereotactic coordinates: a method.
    Spiegelmann R; Friedman WA
    Acta Neurochir (Wien); 1991; 110(1-2):77-81. PubMed ID: 1882723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An MKM-mounted instrument holder for frameless point-stereotactic procedures: a phantom-based accuracy evaluation.
    Willems PW; Noordmans HJ; Berkelbach van der Sprenkel JW; Viergever MA; Tulleken CA
    J Neurosurg; 2001 Dec; 95(6):1067-74. PubMed ID: 11765825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frameless localization for functional neurosurgical procedures: a preliminary accuracy study.
    Henderson JM
    Stereotact Funct Neurosurg; 2004; 82(4):135-41. PubMed ID: 15467380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures.
    Hariz MI; Bergenheim AT; Fodstad H
    Acta Neurochir (Wien); 1993; 123(3-4):147-52. PubMed ID: 8237493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery.
    Schuurman PR; de Bie RM; Majoie CB; Speelman JD; Bosch DA
    J Neurosurg; 1999 Dec; 91(6):911-4. PubMed ID: 10584834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereotactic imaging quality assurance using an anthropomorphic phantom.
    Drzymala RE; Mutic S
    Comput Aided Surg; 1999; 4(5):248-55. PubMed ID: 10581522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computed tomography guided stereotactic thalamotomy using the Brown-Roberts-Wells system for nonparkinsonian movement disorders. Technical note.
    Rosenfeld JV; Barnett GH; Palmer J
    Stereotact Funct Neurosurg; 1991; 56(3):184-92. PubMed ID: 1796223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic resonance imaging versus computed tomography for target localization in functional stereotactic neurosurgery.
    Holtzheimer PE; Roberts DW; Darcey TM
    Neurosurgery; 1999 Aug; 45(2):290-7; discussion 297-8. PubMed ID: 10449073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy of ventrolateral thalamic nucleus localization using unreformatted CT scans and the B-R-W system. Experimental studies and clinical findings during functional neurosurgery.
    Whittle IR; O'Sullivan MG; Ironside JW; Sellar R
    Acta Neurochir Suppl (Wien); 1993; 58():61-4. PubMed ID: 8109304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance imaging stereotactic target localization for deep brain stimulation in dystonic children.
    Vayssiere N; Hemm S; Zanca M; Picot MC; Bonafe A; Cif L; Frerebeau P; Coubes P
    J Neurosurg; 2000 Nov; 93(5):784-90. PubMed ID: 11059658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variables affecting the accuracy of stereotactic localization using computerized tomography.
    Bucholz RD; Ho HW; Rubin JP
    J Neurosurg; 1993 Nov; 79(5):667-73. PubMed ID: 8410245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between clinical outcome and size and site of the lesion in computed tomography guided thalamotomy and pallidotomy.
    Hariz MI
    Stereotact Funct Neurosurg; 1990; 54-55():172-85. PubMed ID: 2080334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brown-Roberts-Wells stereotactic frame modifications to accomplish magnetic resonance imaging guidance in three planes.
    Heilbrun MP; Sunderland PM; McDonald PR; Wells TH; Cosman E; Ganz E
    Appl Neurophysiol; 1987; 50(1-6):143-52. PubMed ID: 3329837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on ventriculographic and computerized tomography-guided determinations of brain targets in functional stereotaxis.
    Hariz MI; Bergenheim AT
    J Neurosurg; 1990 Oct; 73(4):565-71. PubMed ID: 2204690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An applicability study on a CT-guided stereotactic technique for functional neurosurgery.
    Asakura T; Uetsuhara K; Kanemaru R; Hirahara K
    Appl Neurophysiol; 1985; 48(1-6):73-6. PubMed ID: 3915676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.