BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10404963)

  • 61. Relaxation of a single DNA molecule observed by optical microscopy.
    Perkins TT; Quake SR; Smith DE; Chu S
    Science; 1994 May; 264(5160):822-6. PubMed ID: 8171336
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The bacteriophage lambda DNA packaging enzyme: identification of four structural domains of the gpNu1 subunit using limited proteolysis.
    Araya P; Rosemblatt M; Valenzuela P; Murialdo H
    Biol Res; 2001; 34(3-4):207-16. PubMed ID: 11715858
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Single-strand DNA intermediates in phage lambda's Red recombination pathway.
    Hill SA; Stahl MM; Stahl FW
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):2951-6. PubMed ID: 9096327
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DNA binding and bending to initiate packaging of phage lambda DNA.
    Campbell A
    Mol Cell; 2002 May; 9(5):928-9. PubMed ID: 12049730
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Growth and recombination of phage lambda in the presence of exonuclease V from Bacillus subtilis.
    Stahl F; Bowers R; Mooney D; Myers R; Stahl M; Thomason L
    Mol Gen Genet; 2001 Jan; 264(5):716-23. PubMed ID: 11212927
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme.
    Murphy KC
    J Bacteriol; 1991 Sep; 173(18):5808-21. PubMed ID: 1653221
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Bacteriophage lambda and 21 packaging specificities.
    Feiss M; Fisher R; Siegele DA; Widner W
    Prog Clin Biol Res; 1981; 64():213-22. PubMed ID: 6460254
    [No Abstract]   [Full Text] [Related]  

  • 68. [Localization of the Escherichia coli RNA-polymerase binding site (promotor Patt) on phage lambda DNA near the integration site].
    Kravchenko VV; Mikriukov NN
    Dokl Akad Nauk SSSR; 1982; 264(4):999-1001. PubMed ID: 6213394
    [No Abstract]   [Full Text] [Related]  

  • 69. Adenovirus terminal protein protects single stranded DNA from digestion by a cellular exonuclease.
    Dunsworth-Browne M; Schell RE; Berk AJ
    Nucleic Acids Res; 1980 Feb; 8(3):543-54. PubMed ID: 6255444
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Exonuclease III action on microarrays: observation of DNA degradation by fluorescence correlation spectroscopy.
    Ehrlich N; Anhalt K; Hübner C; Brakmann S
    Anal Biochem; 2010 Apr; 399(2):251-6. PubMed ID: 20004637
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Initiation of DNA synthesis on single-stranded DNA templates in vitro promoted by the bacteriophage lambda O and P replication proteins.
    LeBowitz JH; McMacken R
    Adv Exp Med Biol; 1984; 179():77-89. PubMed ID: 6240927
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Arbitrary Digital DNA Computing: A Programmable Molecular Perceptron Driven by Lambda Exonuclease for Lighting up Concatenated Circuits.
    Zhang X; Liu X; Zhang X; Cui S; Yao Y; Wang B; Zhang Q
    ACS Appl Mater Interfaces; 2024 May; 16(19):24372-24383. PubMed ID: 38688864
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Formation of transmembrane channels in liposomes during injection of lambda DNA.
    Roessner CA; Ihler GM
    J Biol Chem; 1986 Jan; 261(1):386-90. PubMed ID: 2416751
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-throughput single-molecule analysis of DNA-protein interactions by tethered particle motion.
    Plénat T; Tardin C; Rousseau P; Salomé L
    Nucleic Acids Res; 2012 Jul; 40(12):e89. PubMed ID: 22422843
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Engineering high-robustness DNA molecular circuits by utilizing nucleases.
    Fu S; Li N; Li J; Deng Y; Xu L; Yu C; Su X
    Nanoscale; 2020 Apr; 12(13):6964-6970. PubMed ID: 32195488
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effective breakage of phage lambda DNA by shearing with ceramic-coated needle of syringe.
    Inokuchi H; Inokuti Y
    Genes Genet Syst; 2005 Feb; 80(1):79-82. PubMed ID: 15824459
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantifying the force in flow-cell based single-molecule stretching experiments.
    Liang J; Li J; Zhong Z; Rujiralai T; Ma J
    Nanoscale; 2021 Oct; 13(37):15916-15927. PubMed ID: 34522927
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Multiplexed single-molecule flow-stretching bead assay for DNA enzymology.
    Lee R; Yang K; Lee JB
    BMB Rep; 2019 Oct; 52(10):589-594. PubMed ID: 31401983
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The effect of physical form of DNA on exonucleaseIII activity revealed by single-molecule observations.
    Kurita H; Torii K; Yasuda H; Takashima K; Katsura S; Mizuno A
    J Fluoresc; 2009 Jan; 19(1):33-40. PubMed ID: 18561002
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Colored noise in the fluctuations of an extended DNA molecule detected by optical trapping.
    Martínez IA; Raj S; Petrov D
    Eur Biophys J; 2012 Jan; 41(1):99-106. PubMed ID: 22045410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.