These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10405098)

  • 1. Gait analysis in the mouse.
    Clarke KA; Still J
    Physiol Behav; 1999 Jul; 66(5):723-9. PubMed ID: 10405098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of subject velocity on ground reaction force measurements and stance times in clinically normal horses at the walk and trot.
    McLaughlin RM; Gaughan EM; Roush JK; Skaggs CL
    Am J Vet Res; 1996 Jan; 57(1):7-11. PubMed ID: 8720231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity-dependent changes of time, force and spatial parameters in Warmblood horses walking and trotting on a treadmill.
    Weishaupt MA; Hogg HP; Auer JA; Wiestner T
    Equine Vet J Suppl; 2010 Nov; (38):530-7. PubMed ID: 21059056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of head and neck position on vertical ground reaction forces and interlimb coordination in the dressage horse ridden at walk and trot on a treadmill.
    Weishaupt MA; Wiestner T; von Peinen K; Waldern N; Roepstorff L; van Weeren R; Meyer H; Johnston C
    Equine Vet J Suppl; 2006 Aug; (36):387-92. PubMed ID: 17402453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Symmetrical and asymmetrical gaits in the mouse: patterns to increase velocity.
    Herbin M; Gasc JP; Renous S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Nov; 190(11):895-906. PubMed ID: 15449091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and kinematics of the passage.
    Weishaupt MA; Byström A; von Peinen K; Wiestner T; Meyers H; Waldern N; Johnston C; van Weeren R; Roepstorff L
    Equine Vet J; 2009 Mar; 41(3):263-7. PubMed ID: 19469233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forms of forward quadrupedal locomotion. I. A comparison of posture, hindlimb kinematics, and motor patterns for normal and crouched walking.
    Trank TV; Chen C; Smith JL
    J Neurophysiol; 1996 Oct; 76(4):2316-26. PubMed ID: 8899606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of walking velocity on forelimb kinematics and kinetics.
    Khumsap S; Clayton HM; Lanovaz JL; Bouchey M
    Equine Vet J Suppl; 2002 Sep; (34):325-9. PubMed ID: 12405709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy and precision of gait events derived from motion capture in horses during walk and trot.
    Boye JK; Thomsen MH; Pfau T; Olsen E
    J Biomech; 2014 Mar; 47(5):1220-4. PubMed ID: 24529754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treadmill locomotion of the mouse lemur (Microcebus murinus); kinematic parameters during symmetrical and asymmetrical gaits.
    Herbin M; Hommet E; Hanotin-Dossot V; Perret M; Hackert R
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Jun; 204(6):537-547. PubMed ID: 29610933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of shoeing on limb movement and ground reaction forces in Icelandic horses at walk, tölt and trot.
    Waldern NM; Wiestner T; Ramseier LC; Amport C; Weishaupt MA
    Vet J; 2013 Dec; 198 Suppl 1():e103-8. PubMed ID: 24360730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical findings in horses showing asymmetrical vertical excursions of the withers at walk.
    Byström A; Egenvall A; Roepstorff L; Rhodin M; Bragança FS; Hernlund E; van Weeren R; Weishaupt MA; Clayton HM
    PLoS One; 2018; 13(9):e0204548. PubMed ID: 30261019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination between the fore- and hindlimbs is bidirectional, asymmetrically organized, and flexible during quadrupedal locomotion in the intact adult cat.
    Thibaudier Y; Hurteau MF; Telonio A; Frigon A
    Neuroscience; 2013 Jun; 240():13-26. PubMed ID: 23485807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential fore- and hindpaw force transmission in the walking rat.
    Clarke KA
    Physiol Behav; 1995 Sep; 58(3):415-9. PubMed ID: 8587946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground reaction force and spatiotemporal measurements of the gait of the mouse.
    Clarke KA; Smart L; Still J
    Behav Res Methods Instrum Comput; 2001 Aug; 33(3):422-6. PubMed ID: 11591074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of quadrupedal locomotion of monkeys: implications for central control.
    Xiang Y; John P; Yakushin SB; Kunin M; Raphan T; Cohen B
    Exp Brain Res; 2007 Mar; 177(4):551-72. PubMed ID: 17006683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground forces applied by galloping dogs.
    Walter RM; Carrier DR
    J Exp Biol; 2007 Jan; 210(Pt 2):208-16. PubMed ID: 17210958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Jumping characteristics of naïve foals: lead changes and description of temporal and linear parameters.
    Santamaría S; Back W; van Weeren PR; Knaap J; Barneveld A
    Equine Vet J Suppl; 2002 Sep; (34):302-7. PubMed ID: 12405705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of limb loading and movement of Icelandic horses while tölting and trotting at equal speeds.
    Waldern NM; Wiestner T; Ramseier LC; Weishaupt MA
    Am J Vet Res; 2015 Dec; 76(12):1031-40. PubMed ID: 26618727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.