These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 10405165)

  • 41. A general strategy to red-shift green fluorescent protein-based biosensors.
    Zhang S; Ai HW
    Nat Chem Biol; 2020 Dec; 16(12):1434-1439. PubMed ID: 32929278
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evolution-guided engineering of small-molecule biosensors.
    Snoek T; Chaberski EK; Ambri F; Kol S; Bjørn SP; Pang B; Barajas JF; Welner DH; Jensen MK; Keasling JD
    Nucleic Acids Res; 2020 Jan; 48(1):e3. PubMed ID: 31777933
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural and evolutionary approaches to the design and optimization of fluorescence-based small molecule biosensors.
    Kaczmarski JA; Mitchell JA; Spence MA; Vongsouthi V; Jackson CJ
    Curr Opin Struct Biol; 2019 Aug; 57():31-38. PubMed ID: 30825845
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new way to rapidly create functional, fluorescent fusion proteins: random insertion of GFP with an in vitro transposition reaction.
    Sheridan DL; Berlot CH; Robert A; Inglis FM; Jakobsdottir KB; Howe JR; Hughes TE
    BMC Neurosci; 2002 Jun; 3():7. PubMed ID: 12086589
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors.
    Hodgson L; Pertz O; Hahn KM
    Methods Cell Biol; 2008; 85():63-81. PubMed ID: 18155459
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved green fluorescent protein by molecular evolution using DNA shuffling.
    Crameri A; Whitehorn EA; Tate E; Stemmer WP
    Nat Biotechnol; 1996 Mar; 14(3):315-9. PubMed ID: 9630892
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA shuffling brightens prospects for GFP.
    Matsumura I; Ellington AD
    Nat Biotechnol; 1996 Mar; 14(3):366. PubMed ID: 9630902
    [No Abstract]   [Full Text] [Related]  

  • 48. A novel analytical method for in vivo phosphate tracking.
    Gu H; Lalonde S; Okumoto S; Looger LL; Scharff-Poulsen AM; Grossman AR; Kossmann J; Jakobsen I; Frommer WB
    FEBS Lett; 2006 Oct; 580(25):5885-93. PubMed ID: 17034793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Understanding, improving and using green fluorescent proteins.
    Cubitt AB; Heim R; Adams SR; Boyd AE; Gross LA; Tsien RY
    Trends Biochem Sci; 1995 Nov; 20(11):448-55. PubMed ID: 8578587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent advances in GFP folding reporter and split-GFP solubility reporter technologies. Application to improving the folding and solubility of recalcitrant proteins from Mycobacterium tuberculosis.
    Cabantous S; Pédelacq JD; Mark BL; Naranjo C; Terwilliger TC; Waldo GS
    J Struct Funct Genomics; 2005; 6(2-3):113-9. PubMed ID: 16211507
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A general strategy to construct small molecule biosensors in eukaryotes.
    Feng J; Jester BW; Tinberg CE; Mandell DJ; Antunes MS; Chari R; Morey KJ; Rios X; Medford JI; Church GM; Fields S; Baker D
    Elife; 2015 Dec; 4():. PubMed ID: 26714111
    [TBL] [Abstract][Full Text] [Related]  

  • 52. GFP technology for live cell imaging.
    Ehrhardt D
    Curr Opin Plant Biol; 2003 Dec; 6(6):622-8. PubMed ID: 14611963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NMR characterization of an engineered domain fusion between maltose binding protein and TEM1 beta-lactamase provides insight into its structure and allosteric mechanism.
    Wright CM; Majumdar A; Tolman JR; Ostermeier M
    Proteins; 2010 May; 78(6):1423-30. PubMed ID: 20034108
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent progress in design of protein-based fluorescent biosensors and their cellular applications.
    Tamura T; Hamachi I
    ACS Chem Biol; 2014 Dec; 9(12):2708-17. PubMed ID: 25317665
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protease-sensitive signalling by chemically engineered intramolecular fluorescent resonance energy transfer mutants of green fluorescent protein.
    Suzuki M; Ito Y; Savage HE; Husimi Y; Douglas KT
    Biochim Biophys Acta; 2004 Sep; 1679(3):222-9. PubMed ID: 15358514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight.
    Platisa J; Vasan G; Yang A; Pieribone VA
    ACS Chem Neurosci; 2017 Mar; 8(3):513-523. PubMed ID: 28045247
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ligand binding and allostery can emerge simultaneously.
    Liang J; Kim JR; Boock JT; Mansell TJ; Ostermeier M
    Protein Sci; 2007 May; 16(5):929-37. PubMed ID: 17400921
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).
    Yong KJ; Scott DJ
    Biotechnol Bioeng; 2015 Mar; 112(3):438-46. PubMed ID: 25220691
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Converting a Periplasmic Binding Protein into a Synthetic Biosensing Switch through Domain Insertion.
    Ribeiro LF; Amarelle V; Ribeiro LFC; Guazzaroni ME
    Biomed Res Int; 2019; 2019():4798793. PubMed ID: 30719443
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.