These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 10405766)

  • 1. Role for nitric oxide but not prostaglandins in acetylcholine-induced relaxation of rat cremaster third-order arterioles in 5-hour ischemia-reperfusion control rats.
    Borsch DM; Cilento EV; Reilly FD
    Chin J Physiol; 1999 Mar; 42(1):9-16. PubMed ID: 10405766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of two levels of vasomotor tone at physiologic suffusate PO2 on acetylcholine- and sodium nitroprusside-induced relaxation of cremaster third-order arterioles in 5-hour ischemia-reperfusion control rats.
    Borsch DM; Cilento EV; Reilly FD
    Int J Microcirc Clin Exp; 1997; 17(3):113-22. PubMed ID: 9272461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of nitric oxide contributes to vasospasm during ischemia/reperfusion injury.
    Wang WZ; Anderson G; Fleming JT; Peter FW; Franken RJ; Acland RD; Barker J
    Plast Reconstr Surg; 1997 Apr; 99(4):1099-108. PubMed ID: 9091909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dilation of rat diaphragmatic arterioles by flow and hypoxia: roles of nitric oxide and prostaglandins.
    Ward ME
    J Appl Physiol (1985); 1999 May; 86(5):1644-50. PubMed ID: 10233130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide, prostanoid and non-NO, non-prostanoid involvement in acetylcholine relaxation of isolated human small arteries.
    Buus NH; Simonsen U; Pilegaard HK; Mulvany MJ
    Br J Pharmacol; 2000 Jan; 129(1):184-92. PubMed ID: 10694219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nitric oxide and cyclooxygenase products in controlling vascular tone in uterine microvessels of rats.
    Saha PR; Alsip NL; Henzel MK; Asher EF
    J Reprod Fertil; 1998 Mar; 112(2):211-6. PubMed ID: 9640259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins.
    Mizuno R; Koller A; Kaley G
    Am J Physiol; 1998 Mar; 274(3):R790-6. PubMed ID: 9530247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow-induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins.
    Koller A; Dörnyei G; Kaley G
    Am J Physiol; 1998 Sep; 275(3):H831-6. PubMed ID: 9724286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permissive effect of nitric oxide in arachidonic acid induced dilation in isolated rat arterioles.
    Bakker EN; Sipkema P
    Cardiovasc Res; 1998 Jun; 38(3):782-7. PubMed ID: 9747447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Release of nitric oxide and prostaglandin H2 to acetylcholine in skeletal muscle venules.
    Dörnyei G; Kaley G; Koller A
    Am J Physiol; 1997 Jun; 272(6 Pt 2):H2541-6. PubMed ID: 9227529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle microcirculatory response to rat alpha-calcitonin gene-related peptide.
    Arden WA; Fiscus RR; Beihn LD; Derbin M; Oremus R; Gross DR
    Neuropeptides; 1994 Jul; 27(1):39-51. PubMed ID: 7526261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine.
    Tanaka Y; Otsuka A; Tanaka H; Shigenobu K
    Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylcholine-induced and nitric oxide-mediated vasodilation in burns.
    Meng F; Korompai FL; Lynch DM; Yuan YS
    J Surg Res; 1998 Dec; 80(2):236-42. PubMed ID: 9878319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased influence of nitric oxide on deoxycorticosterone acetate (DOCA)-salt hypertension.
    Ayangade-Johnson O; Joshua IG
    Am J Hypertens; 2001 Apr; 14(4 Pt 1):387-9. PubMed ID: 11336187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired nitric oxide-independent dilation of renal afferent arterioles in spontaneously hypertensive rats.
    Hayashi K; Matsuda H; Nagahama T; Fujiwara K; Ozawa Y; Kubota E; Honda M; Tokuyama H; Saruta T
    Hypertens Res; 1999 Mar; 22(1):31-7. PubMed ID: 10221348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin.
    Bagi Z; Koller A
    J Vasc Res; 2003; 40(1):47-57. PubMed ID: 12644725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of L-NAME-dependent and -resistant responses to acetylcholine in the rat.
    Dabisch PA; Liles JT; Baber SR; Golwala NH; Murthy SN; Kadowitz PJ
    Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H688-98. PubMed ID: 18032519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide and prostaglandins in the regulation of diaphragmatic arteriolar tone in the rat.
    Boczkowski J; Vicaut E; Danialou G; Aubier M
    J Appl Physiol (1985); 1994 Aug; 77(2):590-6. PubMed ID: 8002504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide-independent response to acetylcholine by terminal arterioles in rat cremaster muscle.
    Vicaut E; Baudry N; Hou X
    J Appl Physiol (1985); 1994 Aug; 77(2):526-33. PubMed ID: 8002496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.