These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 10405823)
1. Association of matrix acid and alkaline phosphatases with mineralization of cartilage and endochondral bone. Roach HI Histochem J; 1999 Jan; 31(1):53-61. PubMed ID: 10405823 [TBL] [Abstract][Full Text] [Related]
2. New aspects of endochondral ossification in the chick: chondrocyte apoptosis, bone formation by former chondrocytes, and acid phosphatase activity in the endochondral bone matrix. Roach HI J Bone Miner Res; 1997 May; 12(5):795-805. PubMed ID: 9144346 [TBL] [Abstract][Full Text] [Related]
3. Complementary interplay between matrix metalloproteinase-9, vascular endothelial growth factor and osteoclast function drives endochondral bone formation. Ortega N; Wang K; Ferrara N; Werb Z; Vu TH Dis Model Mech; 2010; 3(3-4):224-35. PubMed ID: 20142327 [TBL] [Abstract][Full Text] [Related]
4. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. Miao D; Scutt A J Histochem Cytochem; 2002 Mar; 50(3):333-40. PubMed ID: 11850436 [TBL] [Abstract][Full Text] [Related]
5. Extracellular alkaline phosphatase activity in mineralizing matrices of cartilage and bone: ultrastructural localization using a cerium-based method. Bonucci E; Silvestrini G; Bianco P Histochemistry; 1992 May; 97(4):323-7. PubMed ID: 1618646 [TBL] [Abstract][Full Text] [Related]
6. Primary culture of rat growth plate chondrocytes: an in vitro model of growth plate histotype, matrix vesicle biogenesis and mineralization. Garimella R; Bi X; Camacho N; Sipe JB; Anderson HC Bone; 2004 Jun; 34(6):961-70. PubMed ID: 15193542 [TBL] [Abstract][Full Text] [Related]
7. Is acid phosphatase activity present in bone matrix at sites of endochondral ossification in rabbit fracture callus? Bland YS; Ashhurst DE Histochem J; 1998 Jun; 30(6):405-11. PubMed ID: 10192539 [TBL] [Abstract][Full Text] [Related]
8. Changes in the tibial growth plates of chickens with thiram-induced dyschondroplasia. Rath NC; Richards MP; Huff WE; Huff GR; Balog JM J Comp Pathol; 2005 Jul; 133(1):41-52. PubMed ID: 15899490 [TBL] [Abstract][Full Text] [Related]
9. Growth cartilage calcification and formation of bone trabeculae are late and dissociated events in the endochondral ossification of Rana catesbeiana. Felisbino SL; Carvalho HF Cell Tissue Res; 2001 Nov; 306(2):319-23. PubMed ID: 11702243 [TBL] [Abstract][Full Text] [Related]
10. Single cell enzyme activity and proliferation in the growth plate: effects of growth hormone. Gevers EF; Milne J; Robinson IC; Loveridge N J Bone Miner Res; 1996 Aug; 11(8):1103-11. PubMed ID: 8854246 [TBL] [Abstract][Full Text] [Related]
11. Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Blumer MJ; Hausott B; Schwarzer C; Hayman AR; Stempel J; Fritsch H Mech Dev; 2012 Jul; 129(5-8):162-76. PubMed ID: 22579636 [TBL] [Abstract][Full Text] [Related]
12. Contributions of matrix metalloproteinases toward Meckel's cartilage resorption in mice: immunohistochemical studies, including comparisons with developing endochondral bones. Sakakura Y; Hosokawa Y; Tsuruga E; Irie K; Nakamura M; Yajima T Cell Tissue Res; 2007 Apr; 328(1):137-51. PubMed ID: 17136358 [TBL] [Abstract][Full Text] [Related]
13. Cell proliferation and enzyme activities associated with the development of avian tibial dyschondroplasia: an in situ biochemical study. Farquharson C; Whitehead C; Rennie S; Thorp B; Loveridge N Bone; 1992; 13(1):59-67. PubMed ID: 1581110 [TBL] [Abstract][Full Text] [Related]
14. Cytochemical localization of tartrate-resistant acid phosphatase, alkaline phosphatase, and nonspecific esterase in perivascular cells of cartilage canals in the developing mouse epiphysis. Cole AA; Wezeman FH Am J Anat; 1987 Nov; 180(3):237-42. PubMed ID: 3434540 [TBL] [Abstract][Full Text] [Related]
15. Localization of tartrate-resistant acid phosphatase (TRAP), membrane type-1 matrix metalloproteinases (MT1-MMP) and macrophages during early endochondral bone formation. Blumer MJ; Longato S; Fritsch H J Anat; 2008 Oct; 213(4):431-41. PubMed ID: 18643874 [TBL] [Abstract][Full Text] [Related]
16. Immunohistochemical study of alkaline phosphatase in growth plate cartilage, bone, and fetal calf isolated chondrocytes using monoclonal antibodies. Väänänen K; Morris DC; Munoz PA; Parvinen EK Acta Histochem; 1987; 82(2):211-7. PubMed ID: 3128049 [TBL] [Abstract][Full Text] [Related]
17. Regulation of matrix vesicle metabolism by vitamin D metabolites. Boyan BD; Schwartz Z; Swain LD; Bonewald LF; Khare A Connect Tissue Res; 1989; 22(1-4):3-16; discussion 53-61. PubMed ID: 2689084 [TBL] [Abstract][Full Text] [Related]
18. Matrix metalloproteinase-9 expression, tartrate-resistant acid phosphatase activity, and DNA fragmentation in vascular and cellular invasion into cartilage preceding primary endochondral ossification in long bones. Takahara M; Naruse T; Takagi M; Orui H; Ogino T J Orthop Res; 2004 Sep; 22(5):1050-7. PubMed ID: 15304278 [TBL] [Abstract][Full Text] [Related]
19. Prostaglandins mediate the effects of 1,25-(OH)2D3 and 24,25-(OH)2D3 on growth plate chondrocytes in a metabolite-specific and cell maturation-dependent manner. Schwartz Z; Gilley RM; Sylvia VL; Dean DD; Boyan BD Bone; 1999 May; 24(5):475-84. PubMed ID: 10321907 [TBL] [Abstract][Full Text] [Related]
20. Matrix-induced endochondral bone differentiation: influence of hypophysectomy, growth hormone, and thyroid-stimulating hormone. Reddi AH; Sullivan NE Endocrinology; 1980 Nov; 107(5):1291-9. PubMed ID: 7428672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]