These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 10406849)
1. Vesicular-integral membrane protein, VIP36, recognizes high-mannose type glycans containing alpha1-->2 mannosyl residues in MDCK cells. Hara-Kuge S; Ohkura T; Seko A; Yamashita K Glycobiology; 1999 Aug; 9(8):833-9. PubMed ID: 10406849 [TBL] [Abstract][Full Text] [Related]
2. Involvement of VIP36 in intracellular transport and secretion of glycoproteins in polarized Madin-Darby canine kidney (MDCK) cells. Hara-Kuge S; Ohkura T; Ideo H; Shimada O; Atsumi S; Yamashita K J Biol Chem; 2002 May; 277(18):16332-9. PubMed ID: 11872745 [TBL] [Abstract][Full Text] [Related]
3. Structural basis for recognition of high mannose type glycoproteins by mammalian transport lectin VIP36. Satoh T; Cowieson NP; Hakamata W; Ideo H; Fukushima K; Kurihara M; Kato R; Yamashita K; Wakatsuki S J Biol Chem; 2007 Sep; 282(38):28246-55. PubMed ID: 17652092 [TBL] [Abstract][Full Text] [Related]
4. Carbohydrate recognition of vesicular integral protein of 36 kDa (ViP36) in intracellular transport of newly synthesized glycoproteins. Hara-Kuge S; Seko A; Yamashita K Methods Enzymol; 2003; 363():525-32. PubMed ID: 14579601 [No Abstract] [Full Text] [Related]
5. Characterization of VIP36, an animal lectin homologous to leguminous lectins. Fiedler K; Simons K J Cell Sci; 1996 Jan; 109 ( Pt 1)():271-6. PubMed ID: 8834812 [TBL] [Abstract][Full Text] [Related]
6. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. Kamiya Y; Kamiya D; Yamamoto K; Nyfeler B; Hauri HP; Kato K J Biol Chem; 2008 Jan; 283(4):1857-61. PubMed ID: 18025080 [TBL] [Abstract][Full Text] [Related]
7. VIPL has sugar-binding activity specific for high-mannose-type N-glycans, and glucosylation of the alpha1,2 mannotriosyl branch blocks its binding. Yamaguchi D; Kawasaki N; Matsuo I; Totani K; Tozawa H; Matsumoto N; Ito Y; Yamamoto K Glycobiology; 2007 Oct; 17(10):1061-9. PubMed ID: 17621594 [TBL] [Abstract][Full Text] [Related]
8. VIP36 localisation to the early secretory pathway. Füllekrug J; Scheiffele P; Simons K J Cell Sci; 1999 Sep; 112 ( Pt 17)():2813-21. PubMed ID: 10444376 [TBL] [Abstract][Full Text] [Related]
9. Detection of weak sugar binding activity of VIP36 using VIP36-streptavidin complex and membrane-based sugar chains. Kawasaki N; Matsuo I; Totani K; Nawa D; Suzuki N; Yamaguchi D; Matsumoto N; Ito Y; Yamamoto K J Biochem; 2007 Feb; 141(2):221-9. PubMed ID: 17169971 [TBL] [Abstract][Full Text] [Related]
10. Structural basis for disparate sugar-binding specificities in the homologous cargo receptors ERGIC-53 and VIP36. Satoh T; Suzuki K; Yamaguchi T; Kato K PLoS One; 2014; 9(2):e87963. PubMed ID: 24498414 [TBL] [Abstract][Full Text] [Related]
12. Role of the lectin VIP36 in post-ER quality control of human alpha1-antitrypsin. Reiterer V; Nyfeler B; Hauri HP Traffic; 2010 Aug; 11(8):1044-55. PubMed ID: 20477988 [TBL] [Abstract][Full Text] [Related]
13. Profile-based data base scanning for animal L-type lectins and characterization of VIPL, a novel VIP36-like endoplasmic reticulum protein. Nufer O; Mitrovic S; Hauri HP J Biol Chem; 2003 May; 278(18):15886-96. PubMed ID: 12609988 [TBL] [Abstract][Full Text] [Related]
14. VIP36, a novel component of glycolipid rafts and exocytic carrier vesicles in epithelial cells. Fiedler K; Parton RG; Kellner R; Etzold T; Simons K EMBO J; 1994 Apr; 13(7):1729-40. PubMed ID: 8157011 [TBL] [Abstract][Full Text] [Related]
15. VIPL, a VIP36-like membrane protein with a putative function in the export of glycoproteins from the endoplasmic reticulum. Neve EP; Svensson K; Fuxe J; Pettersson RF Exp Cell Res; 2003 Aug; 288(1):70-83. PubMed ID: 12878160 [TBL] [Abstract][Full Text] [Related]
16. Quantitative ER <--> Golgi transport kinetics and protein separation upon Golgi exit revealed by vesicular integral membrane protein 36 dynamics in live cells. Dahm T; White J; Grill S; Füllekrug J; Stelzer EH Mol Biol Cell; 2001 May; 12(5):1481-98. PubMed ID: 11359937 [TBL] [Abstract][Full Text] [Related]
17. Recombinant Expression and Purification of Animal Intracellular L-Type Lectins. Satoh T; Kato K Methods Mol Biol; 2020; 2132():21-28. PubMed ID: 32306311 [TBL] [Abstract][Full Text] [Related]
18. Strict specificity for high-mannose type N-glycans and primary structure of a red alga Eucheuma serra lectin. Hori K; Sato Y; Ito K; Fujiwara Y; Iwamoto Y; Makino H; Kawakubo A Glycobiology; 2007 May; 17(5):479-91. PubMed ID: 17259190 [TBL] [Abstract][Full Text] [Related]
19. Garlic (Allium sativum) lectins bind to high mannose oligosaccharide chains. Dam TK; Bachhawat K; Rani PG; Surolia A J Biol Chem; 1998 Mar; 273(10):5528-35. PubMed ID: 9488677 [TBL] [Abstract][Full Text] [Related]
20. [VIP36 recognizes high-mannose type glycans in relation to apical membrane traffic]. Yamashita K; Kuge S; Ohkura T Tanpakushitsu Kakusan Koso; 1998 Dec; 43(16 Suppl):2455-63. PubMed ID: 9883672 [No Abstract] [Full Text] [Related] [Next] [New Search]