These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 10407058)
1. Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. Li S; Mealing GA; Morley P; Stys PK J Neurosci; 1999 Jul; 19(14):RC16. PubMed ID: 10407058 [TBL] [Abstract][Full Text] [Related]
2. Na(+)-K(+)-ATPase inhibition and depolarization induce glutamate release via reverse Na(+)-dependent transport in spinal cord white matter. Li S; Stys PK Neuroscience; 2001; 107(4):675-83. PubMed ID: 11720790 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of ionotropic glutamate receptor-mediated excitotoxicity in isolated spinal cord white matter. Li S; Stys PK J Neurosci; 2000 Feb; 20(3):1190-8. PubMed ID: 10648723 [TBL] [Abstract][Full Text] [Related]
4. Important role of reverse Na(+)-Ca(2+) exchange in spinal cord white matter injury at physiological temperature. Li S; Jiang Q; Stys PK J Neurophysiol; 2000 Aug; 84(2):1116-9. PubMed ID: 10938336 [TBL] [Abstract][Full Text] [Related]
5. Glutamate transporters in the spinal cord of the wobbler mouse. Bigini P; Bastone A; Mennini T Neuroreport; 2001 Jul; 12(9):1815-20. PubMed ID: 11435904 [TBL] [Abstract][Full Text] [Related]
7. Glutamate transport blockade has a differential effect on AMPA and NMDA receptor-mediated synaptic transmission in the developing barrel cortex. Kidd FL; Isaac JT Neuropharmacology; 2000 Mar; 39(5):725-32. PubMed ID: 10699439 [TBL] [Abstract][Full Text] [Related]
8. alpha-Aminoadipic acid blocks the Na(+)-dependent glutamate transport into acutely isolated Müller glial cells from guinea pig retina. Pannicke T; Stabel J; Heinemann U; Reichelt W Pflugers Arch; 1994 Nov; 429(1):140-2. PubMed ID: 7708474 [TBL] [Abstract][Full Text] [Related]
9. Role of L- and N-type calcium channels in the pathophysiology of traumatic spinal cord white matter injury. Agrawal SK; Nashmi R; Fehlings MG Neuroscience; 2000; 99(1):179-88. PubMed ID: 10924962 [TBL] [Abstract][Full Text] [Related]
10. Immunohistochemical investigations of excitotoxicity in experimental spinal cord trauma. Adamek D; Kałuza J; Jasiński A Folia Histochem Cytobiol; 2001; 39(2):175-6. PubMed ID: 11374812 [TBL] [Abstract][Full Text] [Related]
11. Role of Na(+)-Ca(2+) exchanger after traumatic or hypoxic/ischemic injury to spinal cord white matter. Tomes DJ; Agrawal SK Spine J; 2002; 2(1):35-40. PubMed ID: 14588286 [TBL] [Abstract][Full Text] [Related]
12. Concentrations of glutamate released following spinal cord injury kill oligodendrocytes in the spinal cord. Xu GY; Hughes MG; Ye Z; Hulsebosch CE; McAdoo DJ Exp Neurol; 2004 Jun; 187(2):329-36. PubMed ID: 15144859 [TBL] [Abstract][Full Text] [Related]
13. Neurotoxicity of acute glutamate transport blockade depends on coactivation of both NMDA and AMPA/Kainate receptors in organotypic hippocampal cultures. Vornov JJ; Tasker RC; Park J Exp Neurol; 1995 May; 133(1):7-17. PubMed ID: 7541369 [TBL] [Abstract][Full Text] [Related]
14. Rapid changes in expression of glutamate transporters after spinal cord injury. Vera-Portocarrero LP; Mills CD; Ye Z; Fullwood SD; McAdoo DJ; Hulsebosch CE; Westlund KN Brain Res; 2002 Feb; 927(1):104-10. PubMed ID: 11814437 [TBL] [Abstract][Full Text] [Related]
15. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. Dunlop J; Beal McIlvain H; She Y; Howland DS J Neurosci; 2003 Mar; 23(5):1688-96. PubMed ID: 12629173 [TBL] [Abstract][Full Text] [Related]
16. Experimental spinal cord injury: spatiotemporal characterization of elemental concentrations and water contents in axons and neuroglia. LoPachin RM; Gaughan CL; Lehning EJ; Kaneko Y; Kelly TM; Blight A J Neurophysiol; 1999 Nov; 82(5):2143-53. PubMed ID: 10561394 [TBL] [Abstract][Full Text] [Related]
17. Transient increase in the high affinity [3H]-L-glutamate uptake activity during in vitro development of hippocampal neurons in culture. Gaillet S; Plachez C; Malaval F; Bézine MF; Récasens M Neurochem Int; 2001 Apr; 38(4):293-301. PubMed ID: 11137623 [TBL] [Abstract][Full Text] [Related]
18. The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury. Abraham KE; McGinty JF; Brewer KL Neuroscience; 2001; 104(3):863-74. PubMed ID: 11440816 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms of secondary injury to spinal cord axons in vitro: role of Na+, Na(+)-K(+)-ATPase, the Na(+)-H+ exchanger, and the Na(+)-Ca2+ exchanger. Agrawal SK; Fehlings MG J Neurosci; 1996 Jan; 16(2):545-52. PubMed ID: 8551338 [TBL] [Abstract][Full Text] [Related]
20. Properties of excitatory amino acid transport in the human U373 astrocytoma cell line. Dunlop J; Lou Z; McIlvain HB Brain Res; 1999 Aug; 839(2):235-42. PubMed ID: 10519046 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]