BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 10407155)

  • 1. NMR study of the sites of human hemoglobin acetylated by aspirin.
    Xu AS; Macdonald JM; Labotka RJ; London RE
    Biochim Biophys Acta; 1999 Jul; 1432(2):333-49. PubMed ID: 10407155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation of human hemoglobin by methyl acetylphosphate. Evidence of broad regio-selectivity revealed by NMR studies.
    Xu AS; Labotka RJ; London RE
    J Biol Chem; 1999 Sep; 274(38):26629-32. PubMed ID: 10480863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An NMR analysis of the reaction of ubiquitin with [acetyl-1-13C]aspirin.
    Macdonald JM; LeBlanc DA; Haas AL; London RE
    Biochem Pharmacol; 1999 Jun; 57(11):1233-44. PubMed ID: 10230767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspirin acetylation of betaLys-82 of human hemoglobin. NMR study of acetylated hemoglobin Tsurumai.
    Xu AS; Ohba Y; Vida L; Labotka RJ; London RE
    Biochem Pharmacol; 2000 Oct; 60(7):917-22. PubMed ID: 10974199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing efficiency in protein-protein coupling: subunit-directed acetylation and phase-directed CuAAC ("click coupling") in the formation of hemoglobin bis-tetramers.
    Wang A; Kluger R
    Biochemistry; 2014 Nov; 53(43):6793-9. PubMed ID: 25325574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of fully liganded valency hybrid hemoglobin with inositol hexaphosphate. Implication of the IHP-induced T state of human adult methemoglobin in the low-spin state.
    Morishima I; Hara M; Ishimori K
    Biochemistry; 1986 Nov; 25(22):7243-50. PubMed ID: 3801414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural features required for the reactivity and intracellular transport of bis(3,5-dibromosalicyl)fumarate and related anti-sickling compounds that modify hemoglobin S at the 2,3-diphosphoglycerate binding site.
    Chatterjee R; Iwai Y; Walder RY; Walder JA
    J Biol Chem; 1984 Dec; 259(23):14863-73. PubMed ID: 6501320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The acetylation of hemoglobin by aspirin. In vitro and in vivo.
    Bridges KR; Schmidt GJ; Jensen M; Cerami A; Bunn HF
    J Clin Invest; 1975 Jul; 56(1):201-7. PubMed ID: 237937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anionic binding site and 2,3-DPG effect in bovine hemoglobin.
    Marta M; Patamia M; Colella A; Sacchi S; Pomponi M; Kovacs KM; Lydersen C; Giardina B
    Biochemistry; 1998 Oct; 37(40):14024-9. PubMed ID: 9760237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chain-selective isotopic labeling for NMR studies of large multimeric proteins: application to hemoglobin.
    Simplaceanu V; Lukin JA; Fang TY; Zou M; Ho NT; Ho C
    Biophys J; 2000 Aug; 79(2):1146-54. PubMed ID: 10920044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,3-DPG-Hb complex: a hypothesis for an asymmetric binding.
    Pomponi M; Bertonati C; Fuglei E; Wiig O; Derocher AE
    Biophys Chem; 2000 May; 84(3):253-60. PubMed ID: 10852312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Methyl acetyl phosphate, a new type of antisickling agent: site-specific acetylating agent toward the 2,3-DPG binding site in hemoglobin S.
    Ueno H; Manning JM
    Am J Pediatr Hematol Oncol; 1988; 10(4):348-50. PubMed ID: 3239714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity of cyanate with valine-1 (alpha) of hemoglobin. A probe of conformational change and anion binding.
    Nigen AM; Bass BD; Manning JM
    J Biol Chem; 1976 Dec; 251(23):7638-43. PubMed ID: 1002704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extension of transverse relaxation-optimized spectroscopy techniques to allosteric proteins: CO- and paramagnetic fluoromet-hemoglobin [beta (15N-valine)].
    Nocek JM; Huang K; Hoffman BM
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2538-43. PubMed ID: 10716987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A proton nuclear magnetic resonance investigation of proximal histidyl residues in human normal and abnormal hemoglobins. A probe for the heme pocket.
    Takahashi S; Lin AK; Ho C
    Biophys J; 1982 Jul; 39(1):33-40. PubMed ID: 7104448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectrophotometric, electron paramagnetic resonance and oxygen binding studies on the hemoglobin from the marine polychaete Perinereis aibuhitensis (GrĂ¼be): comparative physiology of hemoglobin.
    Tsuneshige A; Imai K; Hori H; Tyuma I; Gotoh T
    J Biochem; 1989 Sep; 106(3):406-17. PubMed ID: 2558108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and preliminary crystallographic studies of bar-headed goose fluoromethaemoglobin with inositol hexaphosphate.
    Wang HC; Liang YH; Zhu JP; Lu GY
    Acta Crystallogr D Biol Crystallogr; 2000 Sep; 56(Pt 9):1183-4. PubMed ID: 10957640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of intramolecularly cross-linked hemoglobins.
    Walder RY; Andracki ME; Walder JA
    Methods Enzymol; 1994; 231():274-80. PubMed ID: 8041257
    [No Abstract]   [Full Text] [Related]  

  • 19. Spin label detection of intermolecular interactions in carbonmonoxy sickle hemoglobin.
    Johnson ME; Danyluk SS
    Biophys J; 1978 Nov; 24(2):517-24. PubMed ID: 215241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylation of sickle cell hemoglobin by aspirin.
    Klotz IM; Tam JW
    Proc Natl Acad Sci U S A; 1973 May; 70(5):1313-5. PubMed ID: 4514302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.