BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10407199)

  • 1. Characteristics of visual evoked potentials generated by motion coherence onset.
    Niedeggen M; Wist ER
    Brain Res Cogn Brain Res; 1999 Jul; 8(2):95-105. PubMed ID: 10407199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motion evoked brain potentials parallel the consistency of coherent motion perception in humans.
    Niedeggen M; Wist ER
    Neurosci Lett; 1998 Apr; 246(2):61-4. PubMed ID: 9627180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional tuning of human motion adaptation as reflected by the motion VEP.
    Hoffmann MB; Unsöld AS; Bach M
    Vision Res; 2001 Aug; 41(17):2187-94. PubMed ID: 11448711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural dynamics underlying coherent motion perception in children and adults.
    Manning C; Kaneshiro B; Kohler PJ; Duta M; Scerif G; Norcia AM
    Dev Cogn Neurosci; 2019 Aug; 38():100670. PubMed ID: 31228678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging effects on visual evoked potentials (VEPs) for motion direction discrimination.
    Kavcic V; Martin T; Zalar B
    Int J Psychophysiol; 2013 Jul; 89(1):78-87. PubMed ID: 23721981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longer VEP latencies and slower reaction times to the onset of second-order motion than to the onset of first-order motion.
    Ellemberg D; Lavoie K; Lewis TL; Maurer D; Lepore F; Guillemot JP
    Vision Res; 2003 Mar; 43(6):651-8. PubMed ID: 12604101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attending to visual or auditory motion affects perception within and across modalities: an event-related potential study.
    Beer AL; Röder B
    Eur J Neurosci; 2005 Feb; 21(4):1116-30. PubMed ID: 15787717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motion-onset visual evoked potentials predict performance during a global direction discrimination task.
    Martin T; Huxlin KR; Kavcic V
    Neuropsychologia; 2010 Oct; 48(12):3563-72. PubMed ID: 20713072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characteristics of a steady-state visually-evoked potential in humans related to the motion of a stimulus.
    Snowden RJ; Ullrich D; Bach M
    Vision Res; 1995 May; 35(10):1365-73. PubMed ID: 7645265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temporal dynamics of coherent motion processing in autism spectrum disorder: evidence for a deficit in the dorsal pathway.
    Greimel E; Bartling J; Dunkel J; Brückl M; Deimel W; Remschmidt H; Kamp-Becker I; Schulte-Körne G
    Behav Brain Res; 2013 Aug; 251():168-75. PubMed ID: 23747518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolating motion responses in visual evoked potentials by preadapting flicker-sensitive mechanisms.
    Maurer JP; Bach M
    Exp Brain Res; 2003 Aug; 151(4):536-41. PubMed ID: 12851804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast dependence of motion-onset and pattern-reversal evoked potentials.
    Kubová Z; Kuba M; Spekreijse H; Blakemore C
    Vision Res; 1995 Jan; 35(2):197-205. PubMed ID: 7839616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion aftereffects with random-dot chequerboard kinematograms: relation between psychophysical and VEP measures.
    Wist ER; Gross JD; Niedeggen M
    Perception; 1994; 23(10):1155-62. PubMed ID: 7899030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical configuration by stimulus onset visual evoked potentials (SO-VEPs) predicts performance on a motion direction discrimination task.
    Zalar B; Martin T; Kavcic V
    Int J Psychophysiol; 2015 Jun; 96(3):125-33. PubMed ID: 25889693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic detection of motion direction changes in the human brain.
    Pazo-Alvarez P; Amenedo E; Cadaveira F
    Eur J Neurosci; 2004 Apr; 19(7):1978-86. PubMed ID: 15078572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Enhancement but Local Suppression in Feature-based Attention.
    Forschack N; Andersen SK; Müller MM
    J Cogn Neurosci; 2017 Apr; 29(4):619-627. PubMed ID: 27897668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visual motion detection in man is governed by non-retinal mechanisms.
    Bach M; Hoffmann MB
    Vision Res; 2000; 40(18):2379-85. PubMed ID: 10915879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal study of perception of structured optic flow and random visual motion in infants using high-density EEG.
    Agyei SB; Holth M; van der Weel FR; van der Meer AL
    Dev Sci; 2015 May; 18(3):436-51. PubMed ID: 25145649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite dependencies on visual motion coherence in human area MT+ and early visual cortex.
    Händel B; Lutzenberger W; Thier P; Haarmeier T
    Cereb Cortex; 2007 Jul; 17(7):1542-9. PubMed ID: 16940034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of human motion perception: combining evidence from evoked potentials, behavioural performance and computational modelling.
    Patzwahl DR; Zanker JM
    Eur J Neurosci; 2000 Jan; 12(1):273-82. PubMed ID: 10651882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.