These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10407200)

  • 1. Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study.
    Postle BR; D'Esposito M
    Brain Res Cogn Brain Res; 1999 Jul; 8(2):107-15. PubMed ID: 10407200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial working memory activity of the caudate nucleus is sensitive to frame of reference.
    Postle BR; D'Esposito M
    Cogn Affect Behav Neurosci; 2003 Jun; 3(2):133-44. PubMed ID: 12943328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks.
    Levy R; Friedman HR; Davachi L; Goldman-Rakic PS
    J Neurosci; 1997 May; 17(10):3870-82. PubMed ID: 9133405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using event-related fMRI to assess delay-period activity during performance of spatial and nonspatial working memory tasks.
    Postle BR; Zarahn E; D'Esposito M
    Brain Res Brain Res Protoc; 2000 Feb; 5(1):57-66. PubMed ID: 10719266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planning and spatial working memory: a positron emission tomography study in humans.
    Owen AM; Doyon J; Petrides M; Evans AC
    Eur J Neurosci; 1996 Feb; 8(2):353-64. PubMed ID: 8714706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel memory systems for talking about location and age in precuneus, caudate and Broca's region.
    Wallentin M; Roepstorff A; Glover R; Burgess N
    Neuroimage; 2006 Oct; 32(4):1850-64. PubMed ID: 16828565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "What"-Then-Where" in visual working memory: an event-related fMRI study.
    Postle BR; D'Esposito M
    J Cogn Neurosci; 1999 Nov; 11(6):585-97. PubMed ID: 10601740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociating the role of the caudate nucleus and dorsolateral prefrontal cortex in the monitoring of events within human working memory.
    Provost JS; Petrides M; Monchi O
    Eur J Neurosci; 2010 Sep; 32(5):873-80. PubMed ID: 20722715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity in human frontal cortex associated with spatial working memory and saccadic behavior.
    Postle BR; Berger JS; Taich AM; D'Esposito M
    J Cogn Neurosci; 2000; 12 Suppl 2():2-14. PubMed ID: 11506643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of slow brain potentials by working memory load in spatial and nonspatial auditory tasks.
    Rämä P; Paavilainen L; Anourova I; Alho K; Reinikainen K; Sipilä S; Carlson S
    Neuropsychologia; 2000; 38(7):913-22. PubMed ID: 10775702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable functional cortical topographies for working memory maintenance of voice identity and location.
    Rämä P; Poremba A; Sala JB; Yee L; Malloy M; Mishkin M; Courtney SM
    Cereb Cortex; 2004 Jul; 14(7):768-80. PubMed ID: 15084491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Memory for spatial locations, motor responses, and objects: triple dissociation among the hippocampus, caudate nucleus, and extrastriate visual cortex.
    Kesner RP; Bolland BL; Dakis M
    Exp Brain Res; 1993; 93(3):462-70. PubMed ID: 8519335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disruption of caudate working memory activation in chronic blast-related traumatic brain injury.
    Newsome MR; Durgerian S; Mourany L; Scheibel RS; Lowe MJ; Beall EB; Koenig KA; Parsons M; Troyanskaya M; Reece C; Wilde E; Fischer BL; Jones SE; Agarwal R; Levin HS; Rao SM
    Neuroimage Clin; 2015; 8():543-53. PubMed ID: 26110112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased flanker task and forward digit span performance in caudate-nucleus-dependent response strategies.
    Aumont É; Arguin M; Bohbot V; West GL
    Brain Cogn; 2019 Oct; 135():103576. PubMed ID: 31203022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Caudate Nucleus Mediates Learning of Stimulus-Control State Associations.
    Chiu YC; Jiang J; Egner T
    J Neurosci; 2017 Jan; 37(4):1028-1038. PubMed ID: 28123033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of human prefrontal cortex during spatial and nonspatial working memory tasks measured by functional MRI.
    McCarthy G; Puce A; Constable RT; Krystal JH; Gore JC; Goldman-Rakic P
    Cereb Cortex; 1996; 6(4):600-11. PubMed ID: 8670685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for spatial and nonspatial working memory processes in visual search.
    Anderson EJ; Mannan SK; Rees G; Sumner P; Kennard C
    Exp Psychol; 2008; 55(5):301-12. PubMed ID: 25116297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial attention and memory versus motor preparation: premotor cortex involvement as revealed by fMRI.
    Simon SR; Meunier M; Piettre L; Berardi AM; Segebarth CM; Boussaoud D
    J Neurophysiol; 2002 Oct; 88(4):2047-57. PubMed ID: 12364527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covert spatial selection in primate basal ganglia.
    Arcizet F; Krauzlis RJ
    PLoS Biol; 2018 Oct; 16(10):e2005930. PubMed ID: 30365496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.