These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 10407621)
81. Aggregation of entomopathogenic nematodes, heterorhabditis spp. and steinernema spp., among host insects at 9 and 20 degrees C and effects on efficacy. Westerman PR J Invertebr Pathol; 1999 Mar; 73(2):206-13. PubMed ID: 10066401 [TBL] [Abstract][Full Text] [Related]
82. Management of early-instar Japanese beetle (Coleoptera: Searabaeidae) in field-grown nursery crops. Mannion CM; McLane W; Klein MG; Moyseenko J; Oliver JB; Cowan D J Econ Entomol; 2001 Oct; 94(5):1151-61. PubMed ID: 11681678 [TBL] [Abstract][Full Text] [Related]
83. Soil mediates the interaction of coexisting entomopathogenic nematodes with an insect host. Gruner DS; Ram K; Strong DR J Invertebr Pathol; 2007 Jan; 94(1):12-9. PubMed ID: 17005194 [TBL] [Abstract][Full Text] [Related]
84. Systemic insecticides reduce feeding, survival, and fecundity of adult black vine weevils (Coleoptera: Curculionidae) on a variety of ornamental nursery crops. Reding ME; Ranger CM J Econ Entomol; 2011 Apr; 104(2):405-13. PubMed ID: 21510186 [TBL] [Abstract][Full Text] [Related]
85. Reduced Emergence of Cylas formicarius elegantulus (Coleoptera: Curculionidae) from Sweet Potato Roots by Heterorhabditis indica. Myers RY; Sylva CD; Mello CL; Snook KA J Econ Entomol; 2020 Jun; 113(3):1129-1133. PubMed ID: 32222758 [TBL] [Abstract][Full Text] [Related]
86. Pupation by Viburnum leaf beetle (coleoptera: chrysomelidae): behavioral description and impact of environmental variables and entomopathogenic nematodes. Weston PA; Desurmont GA Environ Entomol; 2008 Aug; 37(4):845-9. PubMed ID: 18801247 [TBL] [Abstract][Full Text] [Related]
87. Competition Between Entomopathogenic and Free-Living Bactivorous Nematodes in Larvae of the Weevil Diaprepes abbreviatus. Duncan LW; Dunn DC; Bague G; Nguyen K J Nematol; 2003 Jun; 35(2):187-93. PubMed ID: 19265993 [TBL] [Abstract][Full Text] [Related]
88. Evaluation of chemical controls and entomopathogenic nematodes for control of Phyllophaga white grubs in a Fraser fir production field. Liesch PJ; Williamson RC J Econ Entomol; 2010 Dec; 103(6):1979-87. PubMed ID: 21309216 [TBL] [Abstract][Full Text] [Related]
89. Host range, specificity, and virulence of Steinernema feltiae, Steinernema rarum, and Heterorhabditis bacteriophora (Steinernematidae and Heterorhabditidae) from Argentina. de Doucet MM; Bertolotti MA; Giayetto AL; Miranda MB J Invertebr Pathol; 1999 May; 73(3):237-42. PubMed ID: 10222175 [TBL] [Abstract][Full Text] [Related]
90. Susceptibility of the strawberry crown moth (Lepidoptera: Sesiidae) to entomopathogenic nematodes. Bruck DJ; Edwards DL; Donahue KM J Econ Entomol; 2008 Apr; 101(2):251-5. PubMed ID: 18459385 [TBL] [Abstract][Full Text] [Related]
91. Investigating preference-performance relationships in aboveground-belowground life cycles: a laboratory and field study with the vine weevil (Otiorhynchus sulcatus). Clark KE; Hartley SE; Brennan RM; MacKenzie K; Johnson SN Bull Entomol Res; 2012 Feb; 102(1):63-70. PubMed ID: 21867576 [TBL] [Abstract][Full Text] [Related]
92. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Malan AP; Knoetze R; Moore SD J Invertebr Pathol; 2011 Oct; 108(2):115-25. PubMed ID: 21839086 [TBL] [Abstract][Full Text] [Related]
93. Susceptibility of Pseudaletia unipuncta (Lepidoptera: Noctuidae) to entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) isolated in the Azores: effect of nematode strain and host age. Medeiros J; Rosa JS; Tavares J; Simões N J Econ Entomol; 2000 Oct; 93(5):1403-8. PubMed ID: 11057710 [TBL] [Abstract][Full Text] [Related]
94. Biocontrol of larval mosquitoes by Acilius sulcatus (Coleoptera: Dytiscidae). Chandra G; Mandal SK; Ghosh AK; Das D; Banerjee SS; Chakraborty S BMC Infect Dis; 2008 Oct; 8():138. PubMed ID: 18922168 [TBL] [Abstract][Full Text] [Related]
95. Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. Gouge DH; Snyder JL J Invertebr Pathol; 2006 Mar; 91(3):147-57. PubMed ID: 16448667 [TBL] [Abstract][Full Text] [Related]
96. The effects of repeated applications of the molluscicide metaldehyde and the biocontrol nematode Phasmarhabditis hermaphrodita on molluscs, earthworms, nematodes, acarids and collembolans: a two-year study in north-west Spain. Iglesias J; Castillejo J; Castro R Pest Manag Sci; 2003 Nov; 59(11):1217-24. PubMed ID: 14620048 [TBL] [Abstract][Full Text] [Related]
97. Directional movement of entomopathogenic nematodes in response to electrical field: effects of species, magnitude of voltage, and infective juvenile age. Shapiro-Ilan DI; Lewis EE; Campbell JF; Kim-Shapiro DB J Invertebr Pathol; 2012 Jan; 109(1):34-40. PubMed ID: 21945052 [TBL] [Abstract][Full Text] [Related]
98. Some factors affecting the activity and pathogenicity of Heterorhabditis heliothidis and Steinernema carpocapsae nematodes. Ghally SE J Egypt Soc Parasitol; 1995 Apr; 25(1):125-35. PubMed ID: 7602155 [TBL] [Abstract][Full Text] [Related]
99. Effect of Cry3Bb1-expressing transgenic corn on plant-to-plant movement by western corn rootworm larvae (Coleoptera: Chrysomelidae). Hibbard BE; Vaughn TT; Oyediran IO; Clark TL; Ellersieck MR J Econ Entomol; 2005 Aug; 98(4):1126-38. PubMed ID: 16156562 [TBL] [Abstract][Full Text] [Related]
100. A Comparison of Novel Entomopathogenic Nematode Application Methods for Control of the Chive Gnat, Bradysia odoriphaga (Diptera: Sciaridae). Bai GY; Xu H; Fu YQ; Wang XY; Shen GS; Ma HK; Feng X; Pan J; Gu XS; Guo YZ; Ruan WB; Shapiro-Ilan DI J Econ Entomol; 2016 Oct; 109(5):2006-13. PubMed ID: 27480971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]