BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 10409142)

  • 1. Stimulation of both aerobic glycolysis and Na(+)-K(+)-ATPase activity in skeletal muscle by epinephrine or amylin.
    James JH; Wagner KR; King JK; Leffler RE; Upputuri RK; Balasubramaniam A; Friend LA; Shelly DA; Paul RJ; Fischer JE
    Am J Physiol; 1999 Jul; 277(1):E176-86. PubMed ID: 10409142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis.
    James JH; Fang CH; Schrantz SJ; Hasselgren PO; Paul RJ; Fischer JE
    J Clin Invest; 1996 Nov; 98(10):2388-97. PubMed ID: 8941658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of amylin and other peptide hormones on Na+-K+ transport and contractility in rat skeletal muscle.
    Clausen T
    J Physiol; 2000 Aug; 527 Pt 1(Pt 1):121-30. PubMed ID: 10944175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle.
    Okamoto K; Wang W; Rounds J; Chambers EA; Jacobs DO
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E479-88. PubMed ID: 11500303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased skeletal muscle Na+, K+-ATPase activity as a cause of increased lactate production after hemorrhagic shock.
    Luchette FA; Friend LA; Brown CC; Upputuri RK; James JH
    J Trauma; 1998 May; 44(5):796-801; discussion 801-3. PubMed ID: 9603080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of skeletal muscle Na+-K+ ATPase activity in increased lactate production in sub-acute sepsis.
    McCarter FD; Nierman SR; James JH; Wang L; King JK; Friend LA; Fischer JE
    Life Sci; 2002 Mar; 70(16):1875-88. PubMed ID: 12005173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between muscle Na+K+ ATPase activity and raised lactate concentrations in septic shock: a prospective study.
    Levy B; Gibot S; Franck P; Cravoisy A; Bollaert PE
    Lancet; 2005 Mar 5-11; 365(9462):871-5. PubMed ID: 15752531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia is not the sole cause of lactate production during shock.
    Luchette FA; Jenkins WA; Friend LA; Su C; Fischer JE; James JH
    J Trauma; 2002 Mar; 52(3):415-9. PubMed ID: 11901313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ; Gissel H; Clausen T
    J Physiol; 2003 Mar; 547(Pt 2):567-80. PubMed ID: 12562912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle.
    Fredsted A; Gissel H; Ortenblad N; Clausen T
    J Appl Physiol (1985); 2012 Jun; 112(12):2057-67. PubMed ID: 22492937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na+-K+-ATPase in rat skeletal muscle: muscle fiber-specific differences in exercise-induced changes in ion affinity and maximal activity.
    Juel C
    Am J Physiol Regul Integr Comp Physiol; 2009 Jan; 296(1):R125-32. PubMed ID: 18987285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of exercise-induced Na+-K+ exchange in rat skeletal muscle in vivo.
    Murphy KT; Nielsen OB; Clausen T
    Exp Physiol; 2008 Dec; 93(12):1249-62. PubMed ID: 18586859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB; Clausen T
    Acta Physiol Scand; 1996 Jun; 157(2):199-209. PubMed ID: 8800360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amylin and epinephrine have no direct effect on glucose transport in isolated rat soleus muscle.
    Pittner RA; Wolfe-Lopez D; Young AA; Rink TJ
    FEBS Lett; 1995 May; 365(1):98-100. PubMed ID: 7774725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of insulin and epinephrine on Na+-K+ and glucose transport in soleus muscle.
    Clausen T; Flatman JA
    Am J Physiol; 1987 Apr; 252(4 Pt 1):E492-9. PubMed ID: 3031991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of aerobic glycolysis and Na+-K+-ATPase in renal cell line MDCK.
    Lynch RM; Balaban RS
    Am J Physiol; 1987 Aug; 253(2 Pt 1):C269-76. PubMed ID: 3039854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
    Akaike N; Hirata A; Kiyohara T; Oyama Y
    J Physiol; 1983 Aug; 341():245-55. PubMed ID: 6137559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. alpha-Adrenergic stimulation of glycolysis and Na+, K+-transport in perfused rat liver.
    Becker J; Jakob A
    Eur J Biochem; 1982 Nov; 128(2-3):293-6. PubMed ID: 6295755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The alpha1 isoform of Na+,K+-ATPase in rat soleus and extensor digitorum longus.
    Hansen O
    Acta Physiol Scand; 2001 Nov; 173(3):335-41. PubMed ID: 11736695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.