These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10409491)

  • 21. GENETIC VARIATION IN CRICKET CALLING SONG ACROSS A HYBRID ZONE BETWEEN TWO SIBLING SPECIES.
    Mousseau TA; Howard DJ
    Evolution; 1998 Aug; 52(4):1104-1110. PubMed ID: 28565224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lesions of abdominal connectives reveal a conserved organization of the calling song central pattern generator (CPG) network in different cricket species.
    Lin CC; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Jul; 207(4):533-552. PubMed ID: 34097086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acetylcholine, GABA, glutamate and NO as putative transmitters indicated by immunocytochemistry in the olfactory mushroom body system of the insect brain.
    Schürmann FW
    Acta Biol Hung; 2000; 51(2-4):355-62. PubMed ID: 11034160
    [TBL] [Abstract][Full Text] [Related]  

  • 24. mAChRs in the grasshopper brain mediate excitation by activation of the AC/PKA and the PLC second-messenger pathways.
    Wenzel B; Elsner N; Heinrich R
    J Neurophysiol; 2002 Feb; 87(2):876-88. PubMed ID: 11826053
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus.
    Poulet JF; Hedwig B
    J Exp Biol; 2001 Apr; 204(Pt 7):1281-93. PubMed ID: 11249838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Physical and temporal scaling considerations in a robot model of cricket calling song preference.
    Lund HH; Webb B; Hallam J
    Artif Life; 1998; 4(1):95-107. PubMed ID: 9798277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vibrational signalling, an underappreciated mode in cricket communication.
    Stritih-Peljhan N; Virant-Doberlet M
    Naturwissenschaften; 2021 Sep; 108(5):41. PubMed ID: 34480654
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Muscarinic excitation in grasshopper song control circuits is limited by acetylcholinesterase activity.
    Hoffmann K; Wirmer A; Kunst M; Gocht D; Heinrich R
    Zoolog Sci; 2007 Oct; 24(10):1028-35. PubMed ID: 18088166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recognition of variable courtship song in the field cricket Gryllus assimilis.
    Vedenina VY; Pollack GS
    J Exp Biol; 2012 Jul; 215(Pt 13):2210-9. PubMed ID: 22675181
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stridulatory pattern generation in acridid grasshoppers: metathoracic interneurons in Stenobothrus rubicundus (Germar 1817).
    Schütze H; Elsner N
    J Comp Physiol A; 2001 Sep; 187(7):529-40. PubMed ID: 11730300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency tuning and directional sensitivity of tympanal vibrations in the field cricket
    Lankheet MJ; Cerkvenik U; Larsen ON; van Leeuwen JL
    J R Soc Interface; 2017 Mar; 14(128):. PubMed ID: 28298611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae).
    Montealegre-Z F; Jonsson T; Robert D
    J Exp Biol; 2011 Jun; 214(Pt 12):2105-17. PubMed ID: 21613528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The complex stridulatory behavior of the cricket Eneoptera guyanensis Chopard (Orthoptera: Grylloidea: Eneopterinae).
    Robillard T; Desutter-Grandcolas L
    J Insect Physiol; 2011 Jun; 57(6):694-703. PubMed ID: 21315079
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Songs and morphology in three species of the
    Tarasova T; Tishechkin D; Vedenina V
    Zookeys; 2021; 1073():21-53. PubMed ID: 34949950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior.
    Nolen TG; Hoy RR
    J Neurosci; 1987 Jul; 7(7):2081-96. PubMed ID: 3612230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinematics of phonotactic steering in the walking cricket Gryllus bimaculatus (de Geer).
    Witney AG; Hedwig B
    J Exp Biol; 2011 Jan; 214(Pt 1):69-79. PubMed ID: 21147970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature coupling in cricket acoustic communication. II. Localization of temperature effects on song production and recognition networks in Gryllus firmus.
    Pires A; Hoy RR
    J Comp Physiol A; 1992 Aug; 171(1):79-92. PubMed ID: 1403993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phase shifts in binaural stimuli provide directional cues for sound localisation in the field cricket Gryllus bimaculatus.
    Seagraves KM; Hedwig B
    J Exp Biol; 2014 Jul; 217(Pt 13):2390-8. PubMed ID: 24737767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cephalothoracic command system controls stridulation in the acridid grasshopper Omocestus viridulus L.
    Hedwig B
    J Neurophysiol; 1994 Oct; 72(4):2015-25. PubMed ID: 7823115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.