These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 10409574)
1. Mechanical loading attenuates bone loss due to immobilization and calcium deficiency. Inman CL; Warren GL; Hogan HA; Bloomfield SA J Appl Physiol (1985); 1999 Jul; 87(1):189-95. PubMed ID: 10409574 [TBL] [Abstract][Full Text] [Related]
2. Assessment of experimental osteoporosis using CT-scanning, quantitative X-ray analysis and impact test in calcium deficient ovariectomized rats. Reddy Nagareddy P; Lakshmana M J Pharmacol Toxicol Methods; 2005; 52(3):350-5. PubMed ID: 15996488 [TBL] [Abstract][Full Text] [Related]
3. Immobilization-related bone loss in the rat is increased by calcium deficiency. Weinreb M; Rodan GA; Thompson DD Calcif Tissue Int; 1991 Feb; 48(2):93-100. PubMed ID: 2013018 [TBL] [Abstract][Full Text] [Related]
4. Parathyroid hormone and mechanical usage have a synergistic effect in rat tibial diaphyseal cortical bone. Ma Y; Jee WS; Yuan Z; Wei W; Chen H; Pun S; Liang H; Lin C J Bone Miner Res; 1999 Mar; 14(3):439-48. PubMed ID: 10027909 [TBL] [Abstract][Full Text] [Related]
5. Time course for bone formation with long-term external mechanical loading. Cullen DM; Smith RT; Akhter MP J Appl Physiol (1985); 2000 Jun; 88(6):1943-8. PubMed ID: 10846003 [TBL] [Abstract][Full Text] [Related]
6. Femoral neck is a sensitive indicator of bone loss in immobilized hind limb of mouse. Jämsä T; Koivukangas A; Ryhänen J; Jalovaara P; Tuukkanen J J Bone Miner Res; 1999 Oct; 14(10):1708-13. PubMed ID: 10491218 [TBL] [Abstract][Full Text] [Related]
7. Discordant recovery of bone mass and mechanical properties during prolonged recovery from disuse. Shirazi-Fard Y; Kupke JS; Bloomfield SA; Hogan HA Bone; 2013 Jan; 52(1):433-43. PubMed ID: 23017660 [TBL] [Abstract][Full Text] [Related]
8. Lack of an effect of sodium zeolite A on rat tibia histomorphometry. Firling CE; Evans GL; Wakley GK; Sibonga J; Turner RT J Bone Miner Res; 1996 Feb; 11(2):254-63. PubMed ID: 8822350 [TBL] [Abstract][Full Text] [Related]
9. Disuse-induced deterioration of bone strength is not stopped after free remobilization in young adult rats. Trebacz H J Biomech; 2001 Dec; 34(12):1631-6. PubMed ID: 11716865 [TBL] [Abstract][Full Text] [Related]
10. Long-term disuse osteoporosis seems less sensitive to bisphosphonate treatment than other osteoporosis. Li CY; Price C; Delisser K; Nasser P; Laudier D; Clement M; Jepsen KJ; Schaffler MB J Bone Miner Res; 2005 Jan; 20(1):117-24. PubMed ID: 15619677 [TBL] [Abstract][Full Text] [Related]
11. Bone loss during simulated weightlessness: a biomechanical and mineralization study in the rat model. Garber MA; McDowell DL; Hutton WC Aviat Space Environ Med; 2000 Jun; 71(6):586-92. PubMed ID: 10870817 [TBL] [Abstract][Full Text] [Related]
12. The effects of visceral obesity and androgens on bone: trenbolone protects against loss of femoral bone mineral density and structural strength in viscerally obese and testosterone-deficient male rats. Donner DG; Elliott GE; Beck BR; Forwood MR; Du Toit EF Osteoporos Int; 2016 Mar; 27(3):1073-1082. PubMed ID: 26438310 [TBL] [Abstract][Full Text] [Related]
13. Effect of tamoxifen citrate on canine immobilization (disuse) osteoporosis. Waters DJ; Caywood DD; Turner RT Vet Surg; 1991; 20(6):392-6. PubMed ID: 1369521 [TBL] [Abstract][Full Text] [Related]
14. Changes in mineralization and biomechanics of tibial metaphyses in splinted rats. Lentle RG; Kruger MC J Appl Physiol (1985); 2005 Jul; 99(1):173-80. PubMed ID: 15761087 [TBL] [Abstract][Full Text] [Related]
15. Bone response to alternate-day mechanical loading of the rat tibia. Raab-Cullen DM; Akhter MP; Kimmel DB; Recker RR J Bone Miner Res; 1994 Feb; 9(2):203-11. PubMed ID: 8140933 [TBL] [Abstract][Full Text] [Related]
16. Effects of spinal cord injury and hindlimb immobilization on sublesional and supralesional bones in young growing rats. Liu D; Zhao CQ; Li H; Jiang SD; Jiang LS; Dai LY Bone; 2008 Jul; 43(1):119-125. PubMed ID: 18482879 [TBL] [Abstract][Full Text] [Related]
17. Effects of immobilization, three forms of remobilization, and subsequent deconditioning on bone mineral content and density in rat femora. Kannus P; Järvinen TL; Sievänen H; Kvist M; Rauhaniemi J; Maunu VM; Hurme T; Jozsa L; Järvinen M J Bone Miner Res; 1996 Sep; 11(9):1339-46. PubMed ID: 8864909 [TBL] [Abstract][Full Text] [Related]
18. Pulsed electromagnetic fields partially preserve bone mass, microarchitecture, and strength by promoting bone formation in hindlimb-suspended rats. Jing D; Cai J; Wu Y; Shen G; Li F; Xu Q; Xie K; Tang C; Liu J; Guo W; Wu X; Jiang M; Luo E J Bone Miner Res; 2014 Oct; 29(10):2250-61. PubMed ID: 24753111 [TBL] [Abstract][Full Text] [Related]
19. Effects of minodronate on cortical bone response to mechanical loading in rats. Nagira K; Hagino H; Kameyama Y; Teshima R Bone; 2013 Mar; 53(1):277-83. PubMed ID: 23207800 [TBL] [Abstract][Full Text] [Related]
20. Du-zhong (Eucommia ulmoides) prevents disuse-induced osteoporosis in hind limb suspension rats. Pan Y; Niu Y; Li C; Zhai Y; Zhang R; Guo X; Mei Q Am J Chin Med; 2014; 42(1):143-55. PubMed ID: 24467541 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]