BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10409617)

  • 1. Are the states that occlude rubidium obligatory intermediates of the Na(+)/K(+)-ATPase reaction?
    Kaufman SB; González-Lebrero RM; Schwarzbaum PJ; Nørby JG; Garrahan PJ; Rossi RC
    J Biol Chem; 1999 Jul; 274(30):20779-90. PubMed ID: 10409617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Occlusion of Rb(+) in the Na(+)/K(+)-ATPase. I. The identity of occluded states formed by the physiological or the direct routes: occlusion/deocclusion kinetics through the direct route.
    González-Lebrero RM; Kaufman SB; Montes MR; Nørby JG; Garrahan PJ; Rossi RC
    J Biol Chem; 2002 Feb; 277(8):5910-21. PubMed ID: 11739377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid release of 42K and 86Rb from an occluded state of the Na,K-pump in the presence of ATP or ADP.
    Forbush B
    J Biol Chem; 1987 Aug; 262(23):11104-15. PubMed ID: 2440883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport.
    Glynn IM; Richards DE
    J Physiol; 1982 Sep; 330():17-43. PubMed ID: 6294286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of a single Rb+ increases Na+/K+-ATPase, activating dephosphorylation without stoichiometric occlusion.
    Kaufman SB; González-Lebrero RM; Rossi RC; Garrahan PJ
    J Biol Chem; 2006 Jun; 281(23):15721-6. PubMed ID: 16603545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rb+ occlusion in renal (Na+ + K+)-ATPase characterized with a simple manual assay.
    Shani M; Goldschleger R; Karlish SJ
    Biochim Biophys Acta; 1987 Nov; 904(1):13-21. PubMed ID: 2822111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E2→E1 transition and Rb(+) release induced by Na(+) in the Na(+)/K(+)-ATPase. Vanadate as a tool to investigate the interaction between Rb(+) and E2.
    Montes MR; Monti JL; Rossi RC
    Biochim Biophys Acta; 2012 Sep; 1818(9):2087-93. PubMed ID: 22521366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The E2P-like state induced by magnesium fluoride complexes in the Na,K-ATPase. Kinetics of formation and interaction with Rb(+).
    Montes MR; Ferreira-Gomes MS; Centeno M; Rossi RC
    Biochim Biophys Acta; 2015 Jul; 1848(7):1514-23. PubMed ID: 25838127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative cycling modes of the Na(+)/K(+)-ATPase in the presence of either Na(+) or Rb(+).
    Monti JL; Montes MR; Rossi RC
    Biochim Biophys Acta; 2013 May; 1828(5):1374-83. PubMed ID: 23357355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occlusion of cobalt ions within the phosphorylated forms of the Na+-K+ pump isolated from dog kidney.
    Richards DE
    J Physiol; 1988 Oct; 404():497-514. PubMed ID: 2855351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Occlusion of Rb(+) in the Na(+)/K(+)-ATPase. II. The effects of Rb(+), Na(+), Mg2(+), or ATP on the equilibrium between free and occluded Rb(+).
    Gonzalez-Lebrero RM; Kaufman SB; Garrahan PJ; Rossi RC
    J Biol Chem; 2002 Feb; 277(8):5922-8. PubMed ID: 11739378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid release of 42K or 86Rb from two distinct transport sites on the Na,K-pump in the presence of Pi or vanadate.
    Forbush B
    J Biol Chem; 1987 Aug; 262(23):11116-27. PubMed ID: 2440884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pathway for spontaneous occlusion of Rb+ in the Na+/K+-ATPase.
    González-Lebrero RM; Kaufman SB; Garrahan PJ; Rossi RC
    Biochemistry; 2008 Jun; 47(22):6073-80. PubMed ID: 18465842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passive rubidium fluxes mediated by Na-K-ATPase reconstituted into phospholipid vesicles when ATP- and phosphate-free.
    Karlish SJ; Stein WD
    J Physiol; 1982 Jul; 328():295-316. PubMed ID: 6290646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of ATP and phosphate on rubidium exchange mediated by Na-K-ATPase reconstituted into phospholipid vesicles.
    Karlish SJ; Lieb WR; Stein WD
    J Physiol; 1982 Jul; 328():333-50. PubMed ID: 6290648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An unexpected effect of ATP on the ratio between activity and phosphoenzyme level of Na+/K(+)-ATPase in steady state.
    Schwarzbaum PJ; Kaufman SB; Rossi RC; Garrahan PJ
    Biochim Biophys Acta; 1995 Jan; 1233(1):33-40. PubMed ID: 7833347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Allosteric regulation of the access channels to the Rb+ occlusion sites of (Na+ + K+)-ATPase.
    Hasenauer J; Huang WH; Askari A
    J Biol Chem; 1993 Feb; 268(5):3289-97. PubMed ID: 8381424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurements of Na
    Faraj SE; Valsecchi WM; Ferreira-Gomes M; Centeno M; Saint Martin EM; Fedosova NU; Rossi JPF; Montes MR; Rossi RC
    J Biol Chem; 2023 Feb; 299(2):102811. PubMed ID: 36539036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state analysis of enzymes with non-Michaelis-Menten kinetics: The transport mechanism of Na
    Monti JLE; Montes MR; Rossi RC
    J Biol Chem; 2018 Jan; 293(4):1373-1385. PubMed ID: 29191836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occlusion of 22Na+ and 86Rb+ in membrane-bound and soluble protomeric alpha beta-units of Na,K-ATPase.
    Vilsen B; Andersen JP; Petersen J; Jørgensen PL
    J Biol Chem; 1987 Aug; 262(22):10511-7. PubMed ID: 3038885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.