BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 10409829)

  • 21. How to derive a protein folding potential? A new approach to an old problem.
    Mirny LA; Shakhnovich EI
    J Mol Biol; 1996 Dec; 264(5):1164-79. PubMed ID: 9000638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying folding nucleus based on residue contact networks of proteins.
    Li J; Wang J; Wang W
    Proteins; 2008 Jun; 71(4):1899-907. PubMed ID: 18175318
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [When and how can homologs overcome errors in the energy estimates and make the 3D structure prediction possible].
    Finkel'shteĭn AV; Rykunov DS; Lobanov MIu; Badretdinov FIa; Reva BA; Skolnick J; Mirnyĭ LA; Shakhnovich EI
    Biofizika; 1999; 44(6):980-91. PubMed ID: 10707272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing folding codes for proteins and polymers.
    Chan HS; Dill KA
    Proteins; 1996 Mar; 24(3):335-44. PubMed ID: 8778780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Information and discrimination in pairwise contact potentials.
    Solis AD; Rackovsky S
    Proteins; 2008 May; 71(3):1071-87. PubMed ID: 18004788
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Accurate mean-force pairwise-residue potentials for discrimination of protein folds.
    Reva BA; Finkelstein AV; Sanner MF; Olson AJ
    Pac Symp Biocomput; 1997; ():373-84. PubMed ID: 9390307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of native-state topology for determining the folding rate of two-state proteins.
    Gromiha MM
    J Chem Inf Comput Sci; 2003; 43(5):1481-5. PubMed ID: 14502481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A coarse-grained protein force field for folding and structure prediction.
    Maupetit J; Tuffery P; Derreumaux P
    Proteins; 2007 Nov; 69(2):394-408. PubMed ID: 17600832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A simple Calpha-SC potential with higher accuracy for protein fold recognition.
    Gu J; Li H; Jiang H; Wang X
    Biochem Biophys Res Commun; 2009 Feb; 379(2):610-5. PubMed ID: 19121621
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Failures of inverse folding and threading with gapped alignment.
    Crippen GM
    Proteins; 1996 Oct; 26(2):167-71. PubMed ID: 8916224
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new protein folding recognition potential function.
    Wang Y; Lai L; Han Y; Xu X; Tang Y
    Proteins; 1995 Feb; 21(2):127-9. PubMed ID: 7777487
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential for assessing quality of protein structure based on contact number prediction.
    Ishida T; Nakamura S; Shimizu K
    Proteins; 2006 Sep; 64(4):940-7. PubMed ID: 16788993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model.
    Garcia LG; Araújo AF
    Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy functions that discriminate X-ray and near native folds from well-constructed decoys.
    Park B; Levitt M
    J Mol Biol; 1996 May; 258(2):367-92. PubMed ID: 8627632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energetics of the native and non-native states of the glycophorin transmembrane helix dimer.
    Mottamal M; Zhang J; Lazaridis T
    Proteins; 2006 Mar; 62(4):996-1009. PubMed ID: 16395713
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lessons from the design of a novel atomic potential for protein folding.
    Chen WW; Shakhnovich EI
    Protein Sci; 2005 Jul; 14(7):1741-52. PubMed ID: 15987903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins.
    Dosztányi Z; Csizmók V; Tompa P; Simon I
    J Mol Biol; 2005 Apr; 347(4):827-39. PubMed ID: 15769473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How well can we predict native contacts in proteins based on decoy structures and their energies?
    Zhu J; Zhu Q; Shi Y; Liu H
    Proteins; 2003 Sep; 52(4):598-608. PubMed ID: 12910459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pairwise energies for polypeptide coarse-grained models derived from atomic force fields.
    Betancourt MR; Omovie SJ
    J Chem Phys; 2009 May; 130(19):195103. PubMed ID: 19466867
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Native secondary structure topology has near minimum contact energy among all possible geometrically constrained topologies.
    Sun W; He J
    Proteins; 2009 Oct; 77(1):159-73. PubMed ID: 19415754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.