These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 10410799)

  • 61. Variational electrostatic projection (VEP) methods for efficient modeling of the macromolecular electrostatic and solvation environment in activated dynamics simulations.
    Gregersen BA; York DM
    J Phys Chem B; 2005 Jan; 109(1):536-56. PubMed ID: 16851046
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Enhanced protein steering: cooperative electrostatic and van der Waals forces in antigen-antibody complexes.
    Persson BA; Jönsson B; Lund M
    J Phys Chem B; 2009 Jul; 113(30):10459-64. PubMed ID: 19583233
    [TBL] [Abstract][Full Text] [Related]  

  • 63. What governs the charge transfer in DNA? The role of DNA conformation and environment.
    Kubar T; Elstner M
    J Phys Chem B; 2008 Jul; 112(29):8788-98. PubMed ID: 18582109
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Free-energy component analysis of 40 protein-DNA complexes: a consensus view on the thermodynamics of binding at the molecular level.
    Jayaram B; McConnell K; Dixit SB; Das A; Beveridge DL
    J Comput Chem; 2002 Jan; 23(1):1-14. PubMed ID: 11913374
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Long-timescale simulation methods.
    Elber R
    Curr Opin Struct Biol; 2005 Apr; 15(2):151-6. PubMed ID: 15837172
    [TBL] [Abstract][Full Text] [Related]  

  • 66. An efficient algorithm for multipole energies and derivatives based on spherical harmonics and extensions to particle mesh Ewald.
    Simmonett AC; Pickard FC; Schaefer HF; Brooks BR
    J Chem Phys; 2014 May; 140(18):184101. PubMed ID: 24832247
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A special-purpose computer for molecular dynamics: GRAPE-2A.
    Ito T; Fukushige T; Makino J; Ebisuzaki T; Okumura SK; Sugimoto D; Miyagawa H; Kitamura K
    Proteins; 1994 Oct; 20(2):139-48. PubMed ID: 7846024
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Accelerating molecular modeling applications with graphics processors.
    Stone JE; Phillips JC; Freddolino PL; Hardy DJ; Trabuco LG; Schulten K
    J Comput Chem; 2007 Dec; 28(16):2618-40. PubMed ID: 17894371
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations.
    Wang L; Liang H; Wu J
    J Chem Phys; 2010 Jul; 133(4):044906. PubMed ID: 20687685
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A molecular thermodynamic view of DNA-drug interactions: a case study of 25 minor-groove binders.
    Shaikh SA; Ahmed SR; Jayaram B
    Arch Biochem Biophys; 2004 Sep; 429(1):81-99. PubMed ID: 15288812
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The ENUF method-Ewald summation based on nonuniform fast Fourier transform: Implementation, parallelization, and application.
    Yang SC; Li B; Zhu YL; Laaksonen A; Wang YL
    J Comput Chem; 2020 Oct; 41(27):2316-2335. PubMed ID: 32808686
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular dynamics simulations of double-stranded DNA in an explicit solvent model with the zero-dipole summation method.
    Arakawa T; Kamiya N; Nakamura H; Fukuda I
    PLoS One; 2013; 8(10):e76606. PubMed ID: 24124577
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Zero-multipole summation method for efficiently estimating electrostatic interactions in molecular system.
    Fukuda I
    J Chem Phys; 2013 Nov; 139(17):174107. PubMed ID: 24206287
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Efficient lookup table using a linear function of inverse distance squared.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2013 Oct; 34(28):2412-20. PubMed ID: 23934755
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Order N algorithm for computation of electrostatic interactions in biomolecular systems.
    Lu B; Cheng X; Huang J; McCammon JA
    Proc Natl Acad Sci U S A; 2006 Dec; 103(51):19314-9. PubMed ID: 17148613
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Semi-Empirical Born-Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package.
    Marion A; Gokcan H; Monard G
    J Chem Inf Model; 2019 Jan; 59(1):206-214. PubMed ID: 30433776
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparison of different schemes to treat long-range electrostatic interactions in molecular dynamics simulations of a protein crystal.
    Walser R; Hünenberger PH; van Gunsteren WF
    Proteins; 2001 Jun; 43(4):509-19. PubMed ID: 11340666
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Scaling of Multimillion-Atom Biological Molecular Dynamics Simulation on a Petascale Supercomputer.
    Schulz R; Lindner B; Petridis L; Smith JC
    J Chem Theory Comput; 2009 Oct; 5(10):2798-808. PubMed ID: 26631792
    [TBL] [Abstract][Full Text] [Related]  

  • 79. g_elpot: A Tool for Quantifying Biomolecular Electrostatics from Molecular Dynamics Trajectories.
    Kostritskii AY; Alleva C; Cönen S; Machtens JP
    J Chem Theory Comput; 2021 May; 17(5):3157-3167. PubMed ID: 33914551
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Computational methods for biomolecular electrostatics.
    Dong F; Olsen B; Baker NA
    Methods Cell Biol; 2008; 84():843-70. PubMed ID: 17964951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.