These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 10410799)

  • 81. Direct-Space Corrections Enable Fast and Accurate Lorentz-Berthelot Combination Rule Lennard-Jones Lattice Summation.
    Wennberg CL; Murtola T; Páll S; Abraham MJ; Hess B; Lindahl E
    J Chem Theory Comput; 2015 Dec; 11(12):5737-46. PubMed ID: 26587968
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Extension and evaluation of the multilevel summation method for fast long-range electrostatics calculations.
    Moore SG; Crozier PS
    J Chem Phys; 2014 Jun; 140(23):234112. PubMed ID: 24952528
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An extension of Wolf's method for the treatment of electrostatic interactions: application to liquid water and aqueous solutions.
    Fanourgakis GS
    J Phys Chem B; 2015 Feb; 119(5):1974-85. PubMed ID: 25611255
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.
    Antila HS; Tassel PR; Sammalkorpi M
    J Phys Chem B; 2015 Oct; 119(41):13218-26. PubMed ID: 26352781
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Reconsidering Dispersion Potentials: Reduced Cutoffs in Mesh-Based Ewald Solvers Can Be Faster Than Truncation.
    Isele-Holder RE; Mitchell W; Hammond JR; Kohlmeyer A; Ismail AE
    J Chem Theory Comput; 2013 Dec; 9(12):5412-20. PubMed ID: 26592279
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Performance evaluation of the zero-multipole summation method in modern molecular dynamics software.
    Sakuraba S; Fukuda I
    J Comput Chem; 2018 Jul; 39(20):1551-1560. PubMed ID: 29727031
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy.
    Kohnke B; Kutzner C; Grubmüller H
    J Chem Theory Comput; 2020 Nov; 16(11):6938-6949. PubMed ID: 33084336
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A large scale molecular dynamics simulation code using the fast multipole algorithm (FMD): performance and application.
    Lupo JA; Wang Z; McKenney AM; Pachter R; Mattson W
    J Mol Graph Model; 2002 Oct; 21(2):89-99. PubMed ID: 12398340
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Electrostatic interactions in dissipative particle dynamics-Ewald-like formalism, error analysis, and pressure computation.
    Vaiwala R; Jadhav S; Thaokar R
    J Chem Phys; 2017 Mar; 146(12):124904. PubMed ID: 28388165
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Midpoint cell method for hybrid (MPI+OpenMP) parallelization of molecular dynamics simulations.
    Jung J; Mori T; Sugita Y
    J Comput Chem; 2014 May; 35(14):1064-72. PubMed ID: 24659253
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Extension of adaptive tree code and fast multipole methods to high angular momentum particle charge densities.
    Giese TJ; York DM
    J Comput Chem; 2008 Sep; 29(12):1895-904. PubMed ID: 18432622
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Error estimate of short-range force calculation in inhomogeneous molecular systems.
    Wang H; Schütte C; Zhang P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026704. PubMed ID: 23005879
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Multiple program/multiple data molecular dynamics method with multiple time step integrator for large biological systems.
    Jung J; Sugita Y
    J Comput Chem; 2017 Jun; 38(16):1410-1418. PubMed ID: 27709646
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Fast multipole method for three-dimensional systems with periodic boundary condition in two directions.
    Yoshii N; Andoh Y; Okazaki S
    J Comput Chem; 2020 Apr; 41(9):940-948. PubMed ID: 31930548
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Fast multipole methods for particle dynamics.
    Kurzak J; Pettitt BM
    Mol Simul; 2006; 32(10-11):775-790. PubMed ID: 19194526
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives.
    Pawnikar S; Bhattarai A; Wang J; Miao Y
    Adv Appl Bioinform Chem; 2022; 15():1-19. PubMed ID: 35023931
    [TBL] [Abstract][Full Text] [Related]  

  • 97. A Case Study of Truncated Electrostatics for Simulation of Polyelectrolyte Brushes on GPU Accelerators.
    Nguyen TD; Carrillo JM; Dobrynin AV; Brown WM
    J Chem Theory Comput; 2013 Jan; 9(1):73-83. PubMed ID: 26589011
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Quantitative computer simulations of biomolecules: a snapshot.
    Yang W; Nymeyer H; Zhou HX; Berg B; Brüschweiler R
    J Comput Chem; 2008 Mar; 29(4):668-72. PubMed ID: 17708535
    [TBL] [Abstract][Full Text] [Related]  

  • 99. A novel algorithm for non-bonded-list updating in molecular simulations.
    Maximova T; Keasar C
    J Comput Biol; 2006 Jun; 13(5):1041-8. PubMed ID: 16796550
    [TBL] [Abstract][Full Text] [Related]  

  • 100. On the Numerical Accuracy of Ewald, Smooth Particle Mesh Ewald, and Staggered Mesh Ewald Methods for Correlated Molecular Systems.
    Wang H; Zhang P; Schütte C
    J Chem Theory Comput; 2012 Sep; 8(9):3243-56. PubMed ID: 26605733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.