These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 10411136)
21. Critical role of the acceptor stem of tRNAs(Met) in their aminoacylation by Escherichia coli methionyl-tRNA synthetase. Meinnel T; Mechulam Y; Lazennec C; Blanquet S; Fayat G J Mol Biol; 1993 Jan; 229(1):26-36. PubMed ID: 8421312 [TBL] [Abstract][Full Text] [Related]
22. Nucleotides within the anticodon stem are important for optimal use of tRNA(Lys,3) as the primer for HIV-1 reverse transcription. McCulley A; Morrow CD Virology; 2007 Jul; 364(1):169-77. PubMed ID: 17368706 [TBL] [Abstract][Full Text] [Related]
23. Genetic analysis of the U5-PBS of a novel HIV-1 reveals multiple interactions between the tRNA and RNA genome required for initiation of reverse transcription. Zhang Z; Kang SM; Li Y; Morrow CD RNA; 1998 Apr; 4(4):394-406. PubMed ID: 9630246 [TBL] [Abstract][Full Text] [Related]
24. Probing the importance of tRNA anticodon: human immunodeficiency virus type 1 (HIV-1) RNA genome complementarity with an HIV-1 that selects tRNA(Glu) for replication. Dupuy LC; Kelly NJ; Elgavish TE; Harvey SC; Morrow CD J Virol; 2003 Aug; 77(16):8756-64. PubMed ID: 12885895 [TBL] [Abstract][Full Text] [Related]
25. Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes. Morin A; Auxilien S; Senger B; Tewari R; Grosjean H RNA; 1998 Jan; 4(1):24-37. PubMed ID: 9436905 [TBL] [Abstract][Full Text] [Related]
26. Identification of critical elements in the tRNA acceptor stem and T(Psi)C loop necessary for human immunodeficiency virus type 1 infectivity. Yu Q; Morrow CD J Virol; 2001 May; 75(10):4902-6. PubMed ID: 11312362 [TBL] [Abstract][Full Text] [Related]
27. The naturally occurring N6-threonyl adenine in anticodon loop of Schizosaccharomyces pombe tRNAi causes formation of a unique U-turn motif. Lescrinier E; Nauwelaerts K; Zanier K; Poesen K; Sattler M; Herdewijn P Nucleic Acids Res; 2006; 34(10):2878-86. PubMed ID: 16738127 [TBL] [Abstract][Full Text] [Related]
28. Involvement of the size and sequence of the anticodon loop in tRNA recognition by mammalian and E. coli methionyl-tRNA synthetases. Meinnel T; Mechulam Y; Fayat G; Blanquet S Nucleic Acids Res; 1992 Sep; 20(18):4741-6. PubMed ID: 1408786 [TBL] [Abstract][Full Text] [Related]
29. Initiation of HIV-2 reverse transcription: a secondary structure model of the RNA-tRNA(Lys3) duplex. Freund F; Boulmé F; Litvak S; Tarrago-Litvak L Nucleic Acids Res; 2001 Jul; 29(13):2757-65. PubMed ID: 11433020 [TBL] [Abstract][Full Text] [Related]
30. The yeast Ty3 retrotransposon contains a 5'-3' bipartite primer-binding site and encodes nucleocapsid protein NCp9 functionally homologous to HIV-1 NCp7. Gabus C; Ficheux D; Rau M; Keith G; Sandmeyer S; Darlix JL EMBO J; 1998 Aug; 17(16):4873-80. PubMed ID: 9707446 [TBL] [Abstract][Full Text] [Related]
31. The pheromone response pathway activates transcription of Ty5 retrotransposons located within silent chromatin of Saccharomyces cerevisiae. Ke N; Irwin PA; Voytas DF EMBO J; 1997 Oct; 16(20):6272-80. PubMed ID: 9321406 [TBL] [Abstract][Full Text] [Related]
32. Mutational analysis of conserved positions potentially important for initiator tRNA function in Saccharomyces cerevisiae. von Pawel-Rammingen U; Aström S; Byström AS Mol Cell Biol; 1992 Apr; 12(4):1432-42. PubMed ID: 1549105 [TBL] [Abstract][Full Text] [Related]
33. A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis. Barraud P; Schmitt E; Mechulam Y; Dardel F; Tisné C Nucleic Acids Res; 2008 Sep; 36(15):4894-901. PubMed ID: 18653533 [TBL] [Abstract][Full Text] [Related]
34. Characterization of active reverse transcriptase and nucleoprotein complexes of the yeast retrotransposon Ty3 in vitro. Cristofari G; Gabus C; Ficheux D; Bona M; Le Grice SF; Darlix JL J Biol Chem; 1999 Dec; 274(51):36643-8. PubMed ID: 10593967 [TBL] [Abstract][Full Text] [Related]
35. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation. Mayer C; Köhrer C; Kenny E; Prusko C; RajBhandary UL Biochemistry; 2003 May; 42(17):4787-99. PubMed ID: 12718519 [TBL] [Abstract][Full Text] [Related]
36. Yeast tRNA(Met) recognition by methionyl-tRNA synthetase requires determinants from the primary, secondary and tertiary structure: a review. Senger B; Fasiolo F Biochimie; 1996; 78(7):597-604. PubMed ID: 8955903 [TBL] [Abstract][Full Text] [Related]
37. Efficient aminoacylation of tRNA(Lys,3) by human lysyl-tRNA synthetase is dependent on covalent continuity between the acceptor stem and the anticodon domain. Stello T; Hong M; Musier-Forsyth K Nucleic Acids Res; 1999 Dec; 27(24):4823-9. PubMed ID: 10572184 [TBL] [Abstract][Full Text] [Related]
38. Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Lee CP; RajBhandary UL Proc Natl Acad Sci U S A; 1991 Dec; 88(24):11378-82. PubMed ID: 1763051 [TBL] [Abstract][Full Text] [Related]
39. Evidence that specificity of microhelix charging by a class I tRNA synthetase occurs in the transition state of catalysis. Gale AJ; Shi JP; Schimmel P Biochemistry; 1996 Jan; 35(2):608-15. PubMed ID: 8555234 [TBL] [Abstract][Full Text] [Related]