BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10411259)

  • 1. Flow cytometry and other techniques show that Staphylococcus aureus undergoes significant physiological changes in the early stages of surface-attached culture.
    Williams I; Paul F; Lloyd D; Jepras R; Critchley I; Newman M; Warrack J; Giokarini T; Hayes AJ; Randerson PF; Venables WA
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1325-1333. PubMed ID: 10411259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface proteins and the formation of biofilms by Staphylococcus aureus.
    Kim SJ; Chang J; Rimal B; Yang H; Schaefer J
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):749-756. PubMed ID: 29229527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Global gene expression in Staphylococcus aureus biofilms.
    Beenken KE; Dunman PM; McAleese F; Macapagal D; Murphy E; Projan SJ; Blevins JS; Smeltzer MS
    J Bacteriol; 2004 Jul; 186(14):4665-84. PubMed ID: 15231800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of an oxonol dye in combination with confocal laser scanning microscopy to monitor damage to Staphylococcus aureus cells during colonisation of silver-coated vascular grafts.
    Strathmann M; Wingender J
    Int J Antimicrob Agents; 2004 Sep; 24(3):234-40. PubMed ID: 15325426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of E. coli and Salmonella viability and starvation by confocal laser microscopy and flow cytometry using rhodamine 123, DiBAC4(3), propidium iodide, and CTC.
    López-Amorós R; Castel S; Comas-Riu J; Vives-Rego J
    Cytometry; 1997 Dec; 29(4):298-305. PubMed ID: 9415412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erosion from Staphylococcus aureus biofilms grown under physiologically relevant fluid shear forces yields bacterial cells with reduced avidity to collagen.
    Ymele-Leki P; Ross JM
    Appl Environ Microbiol; 2007 Mar; 73(6):1834-41. PubMed ID: 17277217
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Khan F; Wu X; Matzkin GL; Khan MA; Sakai F; Vidal JE
    Front Cell Infect Microbiol; 2016; 6():104. PubMed ID: 27730096
    [No Abstract]   [Full Text] [Related]  

  • 8. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms.
    Jefferson KK; Goldmann DA; Pier GB
    Antimicrob Agents Chemother; 2005 Jun; 49(6):2467-73. PubMed ID: 15917548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model.
    Fux CA; Wilson S; Stoodley P
    J Bacteriol; 2004 Jul; 186(14):4486-91. PubMed ID: 15231780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions.
    Mampel J; Spirig T; Weber SS; Haagensen JA; Molin S; Hilbi H
    Appl Environ Microbiol; 2006 Apr; 72(4):2885-95. PubMed ID: 16597995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of modeled reduced gravity conditions on bacterial morphology and physiology.
    Vukanti R; Model MA; Leff LG
    BMC Microbiol; 2012 Jan; 12():4. PubMed ID: 22239851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential Production of Psl in Planktonic Cells Leads to Two Distinctive Attachment Phenotypes in Pseudomonas aeruginosa.
    Yang S; Cheng X; Jin Z; Xia A; Ni L; Zhang R; Jin F
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-1beta-induced growth enhancement of Staphylococcus aureus occurs in biofilm but not planktonic cultures.
    McLaughlin RA; Hoogewerf AJ
    Microb Pathog; 2006; 41(2-3):67-79. PubMed ID: 16769197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synergy of berberine chloride and totarol against Staphylococcus aureus grown in planktonic and biofilm cultures.
    Guo N; Zhao X; Li W; Shi C; Meng R; Liu Z; Yu L
    J Med Microbiol; 2015 Aug; 64(8):891-900. PubMed ID: 26272283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains.
    Chae MS; Schraft H
    Int J Food Microbiol; 2000 Dec; 62(1-2):103-11. PubMed ID: 11139010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nisin penetration and efficacy against Staphylococcus aureus biofilms under continuous-flow conditions.
    Godoy-Santos F; Pitts B; Stewart PS; Mantovani HC
    Microbiology (Reading); 2019 Jul; 165(7):761-771. PubMed ID: 31088602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for persisters in Staphylococcus epidermidis RP62a planktonic cultures and biofilms.
    Shapiro JA; Nguyen VL; Chamberlain NR
    J Med Microbiol; 2011 Jul; 60(Pt 7):950-960. PubMed ID: 21415203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate effects on cell-envelope deformation during early-stage Staphylococcus aureus biofilm formation.
    Gu J; Valdevit A; Chou TM; Libera M
    Soft Matter; 2017 Apr; 13(16):2967-2976. PubMed ID: 28361145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K.
    Cerca N; Oliveira R; Azeredo J
    Lett Appl Microbiol; 2007 Sep; 45(3):313-7. PubMed ID: 17718845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SYBR green as a fluorescent probe to evaluate the biofilm physiological state of Staphylococcus epidermidis, using flow cytometry.
    Cerca F; Trigo G; Correia A; Cerca N; Azeredo J; Vilanova M
    Can J Microbiol; 2011 Oct; 57(10):850-6. PubMed ID: 21950962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.