BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10411273)

  • 1. The genes controlling sucrose utilization in Clostridium beijerinckii NCIMB 8052 constitute an operon.
    Reid SJ; Rafudeen MS; Leat NG
    Microbiology (Reading); 1999 Jun; 145 ( Pt 6)():1461-1472. PubMed ID: 10411273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional regulation of the sucrase gene of Staphylococcus xylosus by the repressor ScrR.
    Gering M; Brückner R
    J Bacteriol; 1996 Jan; 178(2):462-9. PubMed ID: 8550467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of enzyme IIscr and sucrose-6-phosphate hydrolase activities in Streptococcus mutans by transcriptional repressor ScrR binding to the cis-active determinants of the scr regulon.
    Wang B; Kuramitsu HK
    J Bacteriol; 2003 Oct; 185(19):5791-9. PubMed ID: 13129950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular analysis of sucrose metabolism of Erwinia amylovora and influence on bacterial virulence.
    Bogs J; Geider K
    J Bacteriol; 2000 Oct; 182(19):5351-8. PubMed ID: 10986236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria.
    Jahreis K; Lengeler JW
    Mol Microbiol; 1993 Jul; 9(1):195-209. PubMed ID: 8412665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of a catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824.
    Tangney M; Mitchell WJ
    J Mol Microbiol Biotechnol; 2000 Jan; 2(1):71-80. PubMed ID: 10937490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmid-mediated sucrose metabolism in Escherichia coli K12: mapping of the scr genes of pUR400.
    Schmid K; Ebner R; Altenbuchner J; Schmitt R; Lengeler JW
    Mol Microbiol; 1988 Jan; 2(1):1-8. PubMed ID: 2835584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of sucrose-6-phosphate hydrolase activity in Streptococcus mutans: characterization of the scrR gene.
    Hiratsuka K; Wang B; Sato Y; Kuramitsu H
    Infect Immun; 1998 Aug; 66(8):3736-43. PubMed ID: 9673256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase.
    Titgemeyer F; Jahreis K; Ebner R; Lengeler JW
    Mol Gen Genet; 1996 Feb; 250(2):197-206. PubMed ID: 8628219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the major promoter for the plasmid-encoded sucrose genes scrY, scrA, and scrB.
    Cowan PJ; Nagesha H; Leonard L; Howard JL; Pittard AJ
    J Bacteriol; 1991 Dec; 173(23):7464-70. PubMed ID: 1938944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse Horizontally-Acquired Gene Clusters Confer Sucrose Utilization to Different Lineages of the Marine Pathogen
    Abushattal S; Vences A; Barca AV; Osorio CR
    Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33105683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Note: sucrose transport and metabolism in Clostridium beijerinckii NCIMB 8052.
    Tangney M; Rousse C; Yazdanian M; Mitchell WJ
    J Appl Microbiol; 1998 May; 84(5):914-9. PubMed ID: 9674147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of the mannitol operon of Clostridium acetobutylicum encoding a phosphotransferase system and a putative PTS-modulated regulator.
    Behrens S; Mitchell W; Bahl H
    Microbiology (Reading); 2001 Jan; 147(Pt 1):75-86. PubMed ID: 11160802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, characterization and sequence analysis of the scrK gene encoding fructokinase of Streptococcus mutans.
    Sato Y; Yamamoto Y; Kizaki H; Kuramitsu HK
    J Gen Microbiol; 1993 May; 139(5):921-7. PubMed ID: 8336109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of sucrose catabolism in Klebsiella pneumoniae and in Scr+ derivatives of Escherichia coli K12.
    Sprenger GA; Lengeler JW
    J Gen Microbiol; 1988 Jun; 134(6):1635-44. PubMed ID: 3065452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon catabolite repression of sucrose utilization in Staphylococcus xylosus: catabolite control protein CcpA ensures glucose preference and autoregulatory limitation of sucrose utilization.
    Jankovic I; Brückner R
    J Mol Microbiol Biotechnol; 2007; 12(1-2):114-20. PubMed ID: 17183218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence analysis of scrA and scrB from Streptococcus sobrinus 6715.
    Chen YY; Lee LN; LeBlanc DJ
    Infect Immun; 1993 Jun; 61(6):2602-10. PubMed ID: 8500898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of scrA and scrB from Streptococcus sobrinus 6715.
    Chen YY; LeBlanc DJ
    Infect Immun; 1992 Sep; 60(9):3739-46. PubMed ID: 1500184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the divergent sacBK and sacAR operons, involved in sucrose utilization by Lactococcus lactis.
    Luesink EJ; Marugg JD; Kuipers OP; de Vos WM
    J Bacteriol; 1999 Mar; 181(6):1924-6. PubMed ID: 10074089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-mediated uptake and metabolism of sucrose by Escherichia coli K-12.
    Schmid K; Schupfner M; Schmitt R
    J Bacteriol; 1982 Jul; 151(1):68-76. PubMed ID: 6211435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.