BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 10411912)

  • 1. Transcription in archaea.
    Kyrpides NC; Ouzounis CA
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8545-50. PubMed ID: 10411912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of protein-tyrosine phosphatases in Archaea.
    Stravopodis DJ; Kyrpides NC
    J Mol Evol; 1999 May; 48(5):625-7. PubMed ID: 10198128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes.
    Gaspin C; Cavaillé J; Erauso G; Bachellerie JP
    J Mol Biol; 2000 Apr; 297(4):895-906. PubMed ID: 10736225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea.
    Koonin EV; Mushegian AR; Galperin MY; Walker DR
    Mol Microbiol; 1997 Aug; 25(4):619-37. PubMed ID: 9379893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics.
    Winker S; Woese CR
    Syst Appl Microbiol; 1991; 14(4):305-10. PubMed ID: 11540071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics.
    Smith DR; Doucette-Stamm LA; Deloughery C; Lee H; Dubois J; Aldredge T; Bashirzadeh R; Blakely D; Cook R; Gilbert K; Harrison D; Hoang L; Keagle P; Lumm W; Pothier B; Qiu D; Spadafora R; Vicaire R; Wang Y; Wierzbowski J; Gibson R; Jiwani N; Caruso A; Bush D; Reeve JN
    J Bacteriol; 1997 Nov; 179(22):7135-55. PubMed ID: 9371463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomics of the Archaea (Euryarchaeota): evolution of conserved protein families, the stable core, and the variable shell.
    Makarova KS; Aravind L; Galperin MY; Grishin NV; Tatusov RL; Wolf YI; Koonin EV
    Genome Res; 1999 Jul; 9(7):608-28. PubMed ID: 10413400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of transcription regulatory sites in Archaea by a comparative genomic approach.
    Gelfand MS; Koonin EV; Mironov AA
    Nucleic Acids Res; 2000 Feb; 28(3):695-705. PubMed ID: 10637320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-binding proteins and evolution of transcription regulation in the archaea.
    Aravind L; Koonin EV
    Nucleic Acids Res; 1999 Dec; 27(23):4658-70. PubMed ID: 10556324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism and regulation of transcription in archaea.
    Bell SD; Jackson SP
    Curr Opin Microbiol; 2001 Apr; 4(2):208-13. PubMed ID: 11282478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox.
    Brochier C; Forterre P; Gribaldo S
    Genome Biol; 2004; 5(3):R17. PubMed ID: 15003120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes.
    Marsh TL; Reich CI; Whitelock RB; Olsen GJ
    Proc Natl Acad Sci U S A; 1994 May; 91(10):4180-4. PubMed ID: 8183889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription in archaea: similarity to that in eucarya.
    Langer D; Hain J; Thuriaux P; Zillig W
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5768-72. PubMed ID: 7597027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Archaeal genomics.
    Gaasterland T
    Curr Opin Microbiol; 1999 Oct; 2(5):542-7. PubMed ID: 10508726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea.
    Kraft A; Lutz C; Lingenhel A; Gröbner P; Piendl W
    Genetics; 1999 Aug; 152(4):1363-72. PubMed ID: 10430567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea.
    Makarova KS; Sorokin AV; Novichkov PS; Wolf YI; Koonin EV
    Biol Direct; 2007 Nov; 2():33. PubMed ID: 18042280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of major archaeal clades correspond to gene acquisitions from bacteria.
    Nelson-Sathi S; Sousa FL; Roettger M; Lozada-Chávez N; Thiergart T; Janssen A; Bryant D; Landan G; Schönheit P; Siebers B; McInerney JO; Martin WF
    Nature; 2015 Jan; 517(7532):77-80. PubMed ID: 25317564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of genes in the genome of the archaeon Methanosarcina mazeii that code for homologs of nuclear eukaryotic molecules involved in RNA processing.
    Hickey AJ; Macario AJ; Conway de Macario E
    Gene; 2000 Jul; 253(1):77-85. PubMed ID: 10925204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning of the transcription factor TFIIB homolog from Sulfolobus shibatae.
    Qureshi SA; Khoo B; Baumann P; Jackson SP
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6077-81. PubMed ID: 7597084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.