These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 10411943)

  • 1. Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity.
    Hansson O; Petersén A; Leist M; Nicotera P; Castilho RF; Brundin P
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8727-32. PubMed ID: 10411943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length.
    Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P
    J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene.
    Hansson O; Guatteo E; Mercuri NB; Bernardi G; Li XJ; Castilho RF; Brundin P
    Eur J Neurosci; 2001 Nov; 14(9):1492-504. PubMed ID: 11722611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine.
    Petersén A; Hansson O; Puschban Z; Sapp E; Romero N; Castilho RF; Sulzer D; Rice M; DiFiglia M; Przedborski S; Brundin P
    Eur J Neurosci; 2001 Nov; 14(9):1425-35. PubMed ID: 11722604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice.
    Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A
    Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal sensitivity to excitotoxicity in a transgenic Huntington's disease rat.
    Winkler C; Gil JM; Araújo IM; Riess O; Skripuletz T; von Hörsten S; Petersén A
    Brain Res Bull; 2006 Apr; 69(3):306-10. PubMed ID: 16564426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease.
    Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M
    Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance of susceptibility to neurodegeneration following intrastriatal injections of quinolinic acid in a new transgenic mouse model of Huntington's disease.
    Petersén A; Chase K; Puschban Z; DiFiglia M; Brundin P; Aronin N
    Exp Neurol; 2002 May; 175(1):297-300. PubMed ID: 12009780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immediate-early gene response to methamphetamine, haloperidol, and quinolinic acid is not impaired in Huntington's disease transgenic mice.
    MacGibbon GA; Hamilton LC; Crocker SF; Costain WJ; Murphy KM; Robertson HA; Denovan-Wright EM
    J Neurosci Res; 2002 Feb; 67(3):372-8. PubMed ID: 11813242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease.
    Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS
    J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA receptor function in mouse models of Huntington disease.
    Cepeda C; Ariano MA; Calvert CR; Flores-Hernández J; Chandler SH; Leavitt BR; Hayden MR; Levine MS
    J Neurosci Res; 2001 Nov; 66(4):525-39. PubMed ID: 11746372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity.
    Palazuelos J; Aguado T; Pazos MR; Julien B; Carrasco C; Resel E; Sagredo O; Benito C; Romero J; Azcoitia I; Fernández-Ruiz J; Guzmán M; Galve-Roperh I
    Brain; 2009 Nov; 132(Pt 11):3152-64. PubMed ID: 19805493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decreasing Levels of the cdk5 Activators, p25 and p35, Reduces Excitotoxicity in Striatal Neurons.
    Park KH; Lu G; Fan J; Raymond LA; Leavitt BR
    J Huntingtons Dis; 2012; 1(1):89-96. PubMed ID: 24353748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function.
    Kim SH; Thomas CA; André VM; Cummings DM; Cepeda C; Levine MS; Ehrlich ME
    ASN Neuro; 2011 Jun; 3(3):e00060. PubMed ID: 21542802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice.
    Nicniocaill B; Haraldsson B; Hansson O; O'Connor WT; Brundin P
    Eur J Neurosci; 2001 Jan; 13(1):206-10. PubMed ID: 11135020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington's disease.
    Zeron MM; Hansson O; Chen N; Wellington CL; Leavitt BR; Brundin P; Hayden MR; Raymond LA
    Neuron; 2002 Mar; 33(6):849-60. PubMed ID: 11906693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington's disease: a STEP in the resistance to excitotoxicity.
    Saavedra A; Giralt A; Rué L; Xifró X; Xu J; Ortega Z; Lucas JJ; Lombroso PJ; Alberch J; Pérez-Navarro E
    J Neurosci; 2011 Jun; 31(22):8150-62. PubMed ID: 21632937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington's disease.
    Levine MS; Klapstein GJ; Koppel A; Gruen E; Cepeda C; Vargas ME; Jokel ES; Carpenter EM; Zanjani H; Hurst RS; Efstratiadis A; Zeitlin S; Chesselet MF
    J Neurosci Res; 1999 Nov; 58(4):515-32. PubMed ID: 10533044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential susceptibility to excitotoxic stress in YAC128 mouse models of Huntington disease between initiation and progression of disease.
    Graham RK; Pouladi MA; Joshi P; Lu G; Deng Y; Wu NP; Figueroa BE; Metzler M; André VM; Slow EJ; Raymond L; Friedlander R; Levine MS; Leavitt BR; Hayden MR
    J Neurosci; 2009 Feb; 29(7):2193-204. PubMed ID: 19228972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relative resistance of striatal neurons containing calbindin or parvalbumin to quinolinic acid-mediated excitotoxicity compared to other striatal neuron types.
    Figueredo-Cardenas G; Harris CL; Anderson KD; Reiner A
    Exp Neurol; 1998 Feb; 149(2):356-72. PubMed ID: 9500958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.