These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 10411943)
1. Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Hansson O; Petersén A; Leist M; Nicotera P; Castilho RF; Brundin P Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8727-32. PubMed ID: 10411943 [TBL] [Abstract][Full Text] [Related]
2. Partial resistance to malonate-induced striatal cell death in transgenic mouse models of Huntington's disease is dependent on age and CAG repeat length. Hansson O; Castilho RF; Korhonen L; Lindholm D; Bates GP; Brundin P J Neurochem; 2001 Aug; 78(4):694-703. PubMed ID: 11520890 [TBL] [Abstract][Full Text] [Related]
3. Resistance to NMDA toxicity correlates with appearance of nuclear inclusions, behavioural deficits and changes in calcium homeostasis in mice transgenic for exon 1 of the huntington gene. Hansson O; Guatteo E; Mercuri NB; Bernardi G; Li XJ; Castilho RF; Brundin P Eur J Neurosci; 2001 Nov; 14(9):1492-504. PubMed ID: 11722611 [TBL] [Abstract][Full Text] [Related]
4. Mice transgenic for exon 1 of the Huntington's disease gene display reduced striatal sensitivity to neurotoxicity induced by dopamine and 6-hydroxydopamine. Petersén A; Hansson O; Puschban Z; Sapp E; Romero N; Castilho RF; Sulzer D; Rice M; DiFiglia M; Przedborski S; Brundin P Eur J Neurosci; 2001 Nov; 14(9):1425-35. PubMed ID: 11722604 [TBL] [Abstract][Full Text] [Related]
5. Increased calbindin-D28k immunoreactivity in striatal projection neurons of R6/2 Huntington's disease transgenic mice. Sun Z; Wang HB; Deng YP; Lei WL; Xie JP; Meade CA; Del Mar N; Goldowitz D; Reiner A Neurobiol Dis; 2005 Dec; 20(3):907-17. PubMed ID: 15990326 [TBL] [Abstract][Full Text] [Related]
6. Normal sensitivity to excitotoxicity in a transgenic Huntington's disease rat. Winkler C; Gil JM; Araújo IM; Riess O; Skripuletz T; von Hörsten S; Petersén A Brain Res Bull; 2006 Apr; 69(3):306-10. PubMed ID: 16564426 [TBL] [Abstract][Full Text] [Related]
7. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease. Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157 [TBL] [Abstract][Full Text] [Related]
8. Maintenance of susceptibility to neurodegeneration following intrastriatal injections of quinolinic acid in a new transgenic mouse model of Huntington's disease. Petersén A; Chase K; Puschban Z; DiFiglia M; Brundin P; Aronin N Exp Neurol; 2002 May; 175(1):297-300. PubMed ID: 12009780 [TBL] [Abstract][Full Text] [Related]
9. Immediate-early gene response to methamphetamine, haloperidol, and quinolinic acid is not impaired in Huntington's disease transgenic mice. MacGibbon GA; Hamilton LC; Crocker SF; Costain WJ; Murphy KM; Robertson HA; Denovan-Wright EM J Neurosci Res; 2002 Feb; 67(3):372-8. PubMed ID: 11813242 [TBL] [Abstract][Full Text] [Related]
10. Alterations in N-methyl-D-aspartate receptor sensitivity and magnesium blockade occur early in development in the R6/2 mouse model of Huntington's disease. Starling AJ; André VM; Cepeda C; de Lima M; Chandler SH; Levine MS J Neurosci Res; 2005 Nov; 82(3):377-86. PubMed ID: 16211559 [TBL] [Abstract][Full Text] [Related]
11. NMDA receptor function in mouse models of Huntington disease. Cepeda C; Ariano MA; Calvert CR; Flores-Hernández J; Chandler SH; Leavitt BR; Hayden MR; Levine MS J Neurosci Res; 2001 Nov; 66(4):525-39. PubMed ID: 11746372 [TBL] [Abstract][Full Text] [Related]
13. Decreasing Levels of the cdk5 Activators, p25 and p35, Reduces Excitotoxicity in Striatal Neurons. Park KH; Lu G; Fan J; Raymond LA; Leavitt BR J Huntingtons Dis; 2012; 1(1):89-96. PubMed ID: 24353748 [TBL] [Abstract][Full Text] [Related]
14. Forebrain striatal-specific expression of mutant huntingtin protein in vivo induces cell-autonomous age-dependent alterations in sensitivity to excitotoxicity and mitochondrial function. Kim SH; Thomas CA; André VM; Cummings DM; Cepeda C; Levine MS; Ehrlich ME ASN Neuro; 2011 Jun; 3(3):e00060. PubMed ID: 21542802 [TBL] [Abstract][Full Text] [Related]