These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10412017)

  • 21. Twelve-hour phase shifts of hamster circadian rhythms elicited by voluntary wheel running.
    Gannon RL; Rea MA
    J Biol Rhythms; 1995 Sep; 10(3):196-210. PubMed ID: 7488758
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase.
    Manoogian EN; Leise TL; Bittman EL
    J Biol Rhythms; 2015 Apr; 30(2):129-43. PubMed ID: 25633984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of the 5HT1A agonist/antagonist BMY 7378 on light-induced phase advances in hamster circadian activity rhythms during aging.
    Byku M; Gannon RL
    J Biol Rhythms; 2000 Aug; 15(4):300-5. PubMed ID: 10942261
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Daily novel wheel running reorganizes and splits hamster circadian activity rhythms.
    Gorman MR; Lee TM
    J Biol Rhythms; 2001 Dec; 16(6):541-51. PubMed ID: 11760012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light-induced c-Fos expression in the SCN and behavioural phase shifts of Djungarian hamsters with a delayed activity onset.
    Schöttner K; Vuillez P; Challet E; Pévet P; Weinert D
    Chronobiol Int; 2015 Jun; 32(5):596-607. PubMed ID: 25938796
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal reorganization of the suprachiasmatic nuclei in hamsters with split circadian rhythms.
    Gorman MR; Yellon SM; Lee TM
    J Biol Rhythms; 2001 Dec; 16(6):552-63. PubMed ID: 11760013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of food deprivation on locomotor activity, plasma glucose, and circadian clock resetting in Syrian hamsters.
    Mistlberger RE; Webb IC; Simon MM; Tse D; Su C
    J Biol Rhythms; 2006 Feb; 21(1):33-44. PubMed ID: 16461983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monoamine depletion alters the entrainment and the response to light of the circadian activity rhythm in hamsters.
    Penev PD; Turek FW; Zee PC
    Brain Res; 1993 May; 612(1-2):156-64. PubMed ID: 8330195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of systemically applied nAChRα7 agonists and antagonists on light-induced phase shifts of hamster circadian activity rhythms.
    Gannon RL; Garcia DA; Millan MJ
    Eur Neuropsychopharmacol; 2014 Jun; 24(6):964-73. PubMed ID: 24388152
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Restricted wheel access following a light cycle inversion slows re-entrainment without internal desynchrony as measured in Per2Luc mice.
    Castillo C; Molyneux P; Carlson R; Harrington ME
    Neuroscience; 2011 May; 182():169-76. PubMed ID: 21392557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of photoperiod and running wheel access on the entrainment of split circadian rhythms in hamsters.
    Rosenthal SL; Vakili MM; Evans JA; Elliott JA; Gorman MR
    BMC Neurosci; 2005 Jun; 6():41. PubMed ID: 15967036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A cholinergic antagonist, mecamylamine, blocks the phase-shifting effects of light on the circadian rhythm of locomotor activity in the golden hamster.
    Keefe DL; Earnest DJ; Nelson D; Takahashi JS; Turek FW
    Brain Res; 1987 Feb; 403(2):308-12. PubMed ID: 3548889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential effects of constant light on circadian clock resetting by photic and nonphotic stimuli in Syrian hamsters.
    Landry GJ; Mistlberger RE
    Brain Res; 2005 Oct; 1059(1):52-8. PubMed ID: 16169532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Administering triazolam on a circadian basis entrains the activity rhythm of hamsters.
    Van Reeth O; Turek FW
    Am J Physiol; 1989 Mar; 256(3 Pt 2):R639-45. PubMed ID: 2923252
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonvisual ocular photoreception in the mammal.
    Van Gelder RN
    Methods Enzymol; 2005; 393():746-55. PubMed ID: 15817322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Behavioral inhibition of circadian responses to light.
    Ralph MR; Mrosovsky N
    J Biol Rhythms; 1992; 7(4):353-9. PubMed ID: 1286206
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delta opioid inhibition of light-induced phase advances in hamster circadian activity rhythms.
    Tierno A; Fiore P; Gannon RL
    Brain Res; 2002 May; 937(1-2):66-73. PubMed ID: 12020864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lesions of the thalamic intergeniculate leaflet alter hamster circadian rhythms.
    Harrington ME; Rusak B
    J Biol Rhythms; 1986; 1(4):309-25. PubMed ID: 2979593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intergeniculate leaflet: contributions to photic and non-photic responsiveness of the hamster circadian system.
    Muscat L; Morin LP
    Neuroscience; 2006 Jun; 140(1):305-20. PubMed ID: 16549274
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase angle difference alters coupling relations of functionally distinct circadian oscillators revealed by rhythm splitting.
    Gorman MR; Steele NA
    J Biol Rhythms; 2006 Jun; 21(3):195-205. PubMed ID: 16731659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.