BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 10412377)

  • 1. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors.
    Gu WY; Lai WM; Mow VC
    J Biomech Eng; 1998 Apr; 120(2):169-80. PubMed ID: 10412377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage.
    Gu WY; Lai WM; Mow VC
    J Biomech; 1993 Jun; 26(6):709-23. PubMed ID: 8514815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A triphasic analysis of negative osmotic flows through charged hydrated soft tissues.
    Gu WY; Lai WM; Mow VC
    J Biomech; 1997 Jan; 30(1):71-8. PubMed ID: 8970927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential.
    Lai WM; Mow VC; Sun DD; Ateshian GA
    J Biomech Eng; 2000 Aug; 122(4):336-46. PubMed ID: 11036556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues.
    Wilson W; van Donkelaar CC; Huyghe JM
    J Biomech Eng; 2005 Feb; 127(1):158-65. PubMed ID: 15868798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A triphasic theory for the swelling and deformation behaviors of articular cartilage.
    Lai WM; Hou JS; Mow VC
    J Biomech Eng; 1991 Aug; 113(3):245-58. PubMed ID: 1921350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hydration and fixed charge density on fluid transport in charged hydrated soft tissues.
    Gu WY; Yao H
    Ann Biomed Eng; 2003 Nov; 31(10):1162-70. PubMed ID: 14649490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physical signals and solute transport in cartilage under dynamic unconfined compression: finite element analysis.
    Yao H; Gu WY
    Ann Biomed Eng; 2004 Mar; 32(3):380-90. PubMed ID: 15095812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.
    Hammel HT; Schlegel WM
    Cell Biochem Biophys; 2005; 42(3):277-345. PubMed ID: 15976460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes.
    Ateshian GA; Maas S; Weiss JA
    J Biomech Eng; 2013 Nov; 135(11):111001. PubMed ID: 23775399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physical interpretation of the phenomenological coefficients of membrane permeability.
    KEDEM O; KATCHALSKY A
    J Gen Physiol; 1961 Sep; 45(1):143-79. PubMed ID: 13752127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical signals and solute transport in human intervertebral disc during compressive stress relaxation: 3D finite element analysis.
    Yao H; Gu WY
    Biorheology; 2006; 43(3,4):323-35. PubMed ID: 16912405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach.
    Yao H; Gu WY
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):63-72. PubMed ID: 16767452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fixed electrical charges and mobile ions affect the measurable mechano-electrochemical properties of charged-hydrated biological tissues: the articular cartilage paradigm.
    Wan LQ; Miller C; Guo XE; Mow VC
    Mech Chem Biosyst; 2004 Mar; 1(1):81-99. PubMed ID: 16783948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the dynamic permeation experiment with implication to cartilaginous tissue engineering.
    Gu WY; Sun DN; Lai WM; Mow VC
    J Biomech Eng; 2004 Aug; 126(4):485-91. PubMed ID: 15543866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of active transmembrane transport in a mixture theory framework.
    Ateshian GA; Morrison B; Hung CT
    Ann Biomed Eng; 2010 May; 38(5):1801-14. PubMed ID: 20213212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrokinetic membrane processes in relation to properties excitable tissues. II. Some theoretical considerations.
    TEORELL T
    J Gen Physiol; 1959 Mar; 42(4):847-63. PubMed ID: 13631208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium.
    Sánchez JM; Li Y; Rubashkin A; Iserovich P; Wen Q; Ruberti JW; Smith RW; Rittenband D; Kuang K; Diecke FP; Fischbarg J
    J Membr Biol; 2002 May; 187(1):37-50. PubMed ID: 12029376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A linearized formulation of triphasic mixture theory for articular cartilage, and its application to indentation analysis.
    Lu XL; Wan LQ; Guo XE; Mow VC
    J Biomech; 2010 Mar; 43(4):673-9. PubMed ID: 19896670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.