These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10412383)

  • 1. Characteristics of glottis-induced turbulence in oscillatory flow: an empirical investigation.
    Choi Y; Wroblewski DE
    J Biomech Eng; 1998 Apr; 120(2):217-26. PubMed ID: 10412383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of glottic aperture on the tracheal flow.
    Brouns M; Verbanck S; Lacor C
    J Biomech; 2007; 40(1):165-72. PubMed ID: 16403504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the laryngeal jet using phase Doppler interferometry.
    Corcoran TE; Chigier N
    J Aerosol Med; 2000; 13(2):125-37. PubMed ID: 11010593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES.
    Chen W; Wang L; Chen L; Ge H; Cui X
    Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing glottal jet turbulence.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2006 Feb; 119(2):1063-73. PubMed ID: 16521768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance and reactance of the excised human larynx, trachea, and main bronchi.
    Jiang TX; Cauberghs M; Van de Woestijne KP
    J Appl Physiol (1985); 1987 Nov; 63(5):1788-95. PubMed ID: 3693214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees.
    Shinwari D; Scherer RC; DeWitt KJ; Afjeh AA
    J Acoust Soc Am; 2003 Jan; 113(1):487-97. PubMed ID: 12558286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure and velocity profiles in a static mechanical hemilarynx model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2002 Dec; 112(6):2996-3003. PubMed ID: 12509021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical 3D analysis of oscillatory flow in the time-varying laryngeal channel.
    Renotte C; Bouffioux V; Wilquem F
    J Biomech; 2000 Dec; 33(12):1637-44. PubMed ID: 11006388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental investigation of oscillatory flow through a symmetrically bifurcating tube.
    Peattie RA; Schwarz W
    J Biomech Eng; 1998 Oct; 120(5):584-93. PubMed ID: 10412435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic and quantitative measurement of laryngeal video stroboscopic images.
    Kuo CJ; Kuo J; Hsiao SW; Lee CL; Lee JC; Ke BH
    Proc Inst Mech Eng H; 2017 Jan; 231(1):48-57. PubMed ID: 28097934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational simulations of airflow in an in vitro model of the pediatric upper airways.
    Allen GM; Shortall BP; Gemci T; Corcoran TE; Chigier NA
    J Biomech Eng; 2004 Oct; 126(5):604-13. PubMed ID: 15648813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing turbulence models for flow through a rigid glottal model.
    Suh J; Frankel SH
    J Acoust Soc Am; 2008 Mar; 123(3):1237-40. PubMed ID: 18345812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inertial deposition effects: a study of aerosol mechanics in the trachea using laser Doppler velocimetry and fluorescent dye.
    Corcoran TE; Chigier N
    J Biomech Eng; 2002 Dec; 124(6):629-37. PubMed ID: 12596629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study of false vocal folds effects on unsteady airflows through static models of the human larynx.
    Farbos de Luzan C; Chen J; Mihaescu M; Khosla SM; Gutmark E
    J Biomech; 2015 May; 48(7):1248-57. PubMed ID: 25835787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the larynx on oscillatory flow in the central airways: a model study.
    Menon AS; Weber ME; Chang HK
    J Appl Physiol (1985); 1985 Jul; 59(1):160-9. PubMed ID: 4030560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the glottal impedance with a mechanical model.
    Rösler S; Strube HW
    J Acoust Soc Am; 1989 Nov; 86(5):1708-16. PubMed ID: 2808920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow separation in a computational oscillating vocal fold model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation.
    Calmet H; Gambaruto AM; Bates AJ; Vázquez M; Houzeaux G; Doorly DJ
    Comput Biol Med; 2016 Feb; 69():166-80. PubMed ID: 26773939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.