These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10412384)

  • 1. Alteration of mean wall shear stress near an oscillating stagnation point.
    Hazel AL; Pedley TJ
    J Biomech Eng; 1998 Apr; 120(2):227-37. PubMed ID: 10412384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation of intimal hyperplasia development and shear stress distribution at the distal end-side-anastomosis, in vitro study using particle image velocimetry.
    Heise M; Krüger U; Rückert R; Pfitzman R; Neuhaus P; Settmacher U
    Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):357-66. PubMed ID: 14511996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients.
    Wells DR; Archie JP; Kleinstreuer C
    J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis.
    Papaharilaou Y; Doorly DJ; Sherwin SJ
    J Biomech; 2002 Sep; 35(9):1225-39. PubMed ID: 12163312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis.
    Weston MW; Rhee K; Tarbell JM
    J Biomech; 1996 Feb; 29(2):187-98. PubMed ID: 8849812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK; Giddens DP; Bharadvaj BK; Sottiurai VS; Mabon RF; Glagov S
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamics of an artery with mild stenosis.
    Cavalcanti S
    J Biomech; 1995 Apr; 28(4):387-99. PubMed ID: 7738048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions.
    Loth F; Jones SA; Giddens DP; Bassiouny HS; Glagov S; Zarins CK
    J Biomech Eng; 1997 May; 119(2):187-94. PubMed ID: 9168395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses.
    Loth F; Jones SA; Zarins CK; Giddens DP; Nassar RF; Glagov S; Bassiouny HS
    J Biomech Eng; 2002 Feb; 124(1):44-51. PubMed ID: 11871604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometric design improvements for femoral graft-artery junctions mitigating restenosis.
    Lei M; Kleinstreuer C; Archie JP
    J Biomech; 1996 Dec; 29(12):1605-14. PubMed ID: 8945659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis.
    Steinman DA; Ethier CR
    J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model.
    Ojha M
    J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle image velocimetry measurements of three proximal anastomosis models under a pulsatile flow condition.
    Chua LP; Ji WF; Yu CM; Zhou TM; Tan YS
    Proc Inst Mech Eng H; 2008 Apr; 222(3):249-63. PubMed ID: 18491695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow.
    Box FM; van der Geest RJ; Rutten MC; Reiber JH
    Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of wall shear stress in venous neointimal hyperplasia of arteriovenous fistulae.
    Jia L; Wang L; Wei F; Yu H; Dong H; Wang B; Lu Z; Sun G; Chen H; Meng J; Li B; Zhang R; Bi X; Wang Z; Pang H; Jiang A
    Nephrology (Carlton); 2015 May; 20(5):335-42. PubMed ID: 25581663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling leads to distinctly more intimal hyperplasia in coronary than in infrainguinal vein grafts.
    Zilla P; Moodley L; Scherman J; Krynauw H; Kortsmit J; Human P; Wolf MF; Franz T
    J Vasc Surg; 2012 Jun; 55(6):1734-41. PubMed ID: 22386141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow patterns and preferred sites of intimal thickening in bypass-grafted arteries .
    Sunamura M; Ishibashi H; Karino T
    Int Angiol; 2012 Apr; 31(2):187-97. PubMed ID: 22466986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.