These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10412388)

  • 1. Thermal expansion measurements of frozen biological tissues at cryogenic temperatures.
    Rabin Y; Taylor MJ; Wolmark N
    J Biomech Eng; 1998 Apr; 120(2):259-66. PubMed ID: 10412388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of freezing rates and dimethyl sulfoxide concentrations on thermal expansion of rabbit aorta during freezing phase change as measured by thermo mechanical analysis.
    Xu Y; Hua TC; Sun DW; Zhou GY; Xu F
    J Biomech; 2007; 40(14):3201-6. PubMed ID: 17560581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of freezing rates and cryoprotectant on thermal expansion of articular cartilage during freezing process.
    Xu Y; Sun HJ; Lv Y; Zou JC; Lin BL; Hua TC
    Cryo Letters; 2013; 34(4):313-23. PubMed ID: 23995399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High accuracy thermal conductivity measurement of aqueous cryoprotective agents and semi-rigid biological tissues using a microfabricated thermal sensor.
    Liang XM; Sekar PK; Zhao G; Zhou X; Shu Z; Huang Z; Ding W; Zhang Q; Gao D
    Sci Rep; 2015 May; 5():10377. PubMed ID: 25993037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can thermal expansion differences between cryopreserved tissue and cryoprotective agents alone cause cracking?
    Steif PS; Noday DA; Rabin Y
    Cryo Letters; 2009; 30(6):414-21. PubMed ID: 20309497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology.
    Choi J; Bischof JC
    Cryobiology; 2010 Feb; 60(1):52-70. PubMed ID: 19948163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.
    Han B; Bischof JC
    J Biomech Eng; 2004 Apr; 126(2):196-203. PubMed ID: 15179849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscosities encountered during the cryopreservation of dimethyl sulphoxide systems.
    Kilbride P; Morris GJ
    Cryobiology; 2017 Jun; 76():92-97. PubMed ID: 28414045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal expansion of blood vessels and muscle specimens permeated with DMSO, DP6, and VS55 at cryogenic temperatures.
    Rabin Y; Plitz J
    Ann Biomed Eng; 2005 Sep; 33(9):1213-28. PubMed ID: 16133928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryoprotectant equilibration in tissues.
    Elmoazzen HY; Elliott JA; McGann LE
    Cryobiology; 2005 Aug; 51(1):85-91. PubMed ID: 15979064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal expansion of blood vessels in low cryogenic temperatures, Part II: Vitrification with VS55, DP6, and 7.05 M DMSO.
    Rios JL; Rabin Y
    Cryobiology; 2006 Apr; 52(2):284-94. PubMed ID: 16488407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural deep eutectic systems as alternative nontoxic cryoprotective agents.
    Castro VIB; Craveiro R; Silva JM; Reis RL; Paiva A; C Duarte AR
    Cryobiology; 2018 Aug; 83():15-26. PubMed ID: 29944855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal conductivity of the cryoprotective cocktail DP6 in cryogenic temperatures, in the presence and absence of synthetic ice modulators.
    Ehrlich LE; Malen JA; Rabin Y
    Cryobiology; 2016 Oct; 73(2):196-202. PubMed ID: 27471057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glass-forming property of the system diethyl sulphoxide/water and its cryoprotective action on Escherichia coli survival.
    Markarian SA; Bonora S; Bagramyan KA; Arakelyan VB
    Cryobiology; 2004 Aug; 49(1):1-9. PubMed ID: 15265712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal expansion of blood vessels in low cryogenic temperatures Part I: A new experimental device.
    Jimenez Rios JL; Rabin Y
    Cryobiology; 2006 Apr; 52(2):269-83. PubMed ID: 16487503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental study of the mechanical response of frozen biological tissues at cryogenic temperatures.
    Rabin Y; Steif PS; Taylor MJ; Julian TB; Wolmark N
    Cryobiology; 1996 Aug; 33(4):472-82. PubMed ID: 8764856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative analysis of the thermal properties of porcine liver with glycerol at subzero and cryogenic temperatures.
    Choi JH; Bischof JC
    Cryobiology; 2008 Oct; 57(2):79-83. PubMed ID: 18656857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of Leptospires in Short- and Medium-Term Cryopreservation Using Different Glycerol and Dimethyl Sulfoxide Concentrations.
    Narduche L; Hamond C; Martins GM; Medeiros MA; Lilenbaum W
    Biopreserv Biobank; 2016 Feb; 14(1):81-3. PubMed ID: 26808330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of hydroxyapatite nanoparticles on the viscosity of dimethyl sulfoxide-H2O-NaCl and glycerol-H2O-NaCl ternary systems at subzero temperatures.
    Yi J; Tang H; Zhao G
    Cryobiology; 2014 Oct; 69(2):291-8. PubMed ID: 25127873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of collagen-based tissue equivalents. II. Improved freezing in the presence of cryoprotective agents.
    Neidert MR; Devireddy RV; Tranquillo RT; Bischof JC
    Tissue Eng; 2004; 10(1-2):23-32. PubMed ID: 15009927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.