These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10412420)

  • 1. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis.
    Cohen B; Lai WM; Mow VC
    J Biomech Eng; 1998 Aug; 120(4):491-6. PubMed ID: 10412420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Biphasic Transversely Isotropic Poroviscoelastic Model for the Unconfined Compression of Hydrated Soft Tissue.
    Hatami-Marbini H; Maulik R
    J Biomech Eng; 2016 Mar; 138(3):4032059. PubMed ID: 26593630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confined and unconfined stress relaxation of cartilage: appropriateness of a transversely isotropic analysis.
    Bursać PM; Obitz TW; Eisenberg SR; Stamenović D
    J Biomech; 1999 Oct; 32(10):1125-30. PubMed ID: 10476852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of the porcine growth plate and its three zones from unconfined compression tests.
    Sergerie K; Lacoursière MO; Lévesque M; Villemure I
    J Biomech; 2009 Mar; 42(4):510-6. PubMed ID: 19185303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 1998 Oct; 120(5):608-13. PubMed ID: 10412438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties of the porcine growth plate vary with developmental stage.
    Wosu R; Sergerie K; Lévesque M; Villemure I
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):303-12. PubMed ID: 21559968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressive stress-relaxation behavior of bovine growth plate may be described by the nonlinear biphasic theory.
    Cohen B; Chorney GS; Phillips DP; Dick HM; Mow VC
    J Orthop Res; 1994 Nov; 12(6):804-13. PubMed ID: 7983556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fibril-network-reinforced biphasic model of cartilage in unconfined compression.
    Soulhat J; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 1999 Jun; 121(3):340-7. PubMed ID: 10396701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear model for compression tests on articular cartilage.
    Grillo A; Guaily A; Giverso C; Federico S
    J Biomech Eng; 2015 Jul; 137(7):. PubMed ID: 25840005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model.
    Fortin M; Soulhat J; Shirazi-Adl A; Hunziker EB; Buschmann MD
    J Biomech Eng; 2000 Apr; 122(2):189-95. PubMed ID: 10834160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of flow-independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage.
    Huang CY; Mow VC; Ateshian GA
    J Biomech Eng; 2001 Oct; 123(5):410-7. PubMed ID: 11601725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I--Simultaneous prediction of reaction force and lateral displacement.
    DiSilvestro MR; Zhu Q; Wong M; Jurvelin JS; Suh JK
    J Biomech Eng; 2001 Apr; 123(2):191-7. PubMed ID: 11340881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An experimental and theoretical analysis of unconfined compression of corneal stroma.
    Hatami-Marbini H; Etebu E
    J Biomech; 2013 Jun; 46(10):1752-8. PubMed ID: 23664313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering 3D hidden elasticity in isotropic and transversely isotropic materials with physics-informed UNets.
    Kamali A; Laksari K
    Acta Biomater; 2024 Aug; 184():254-263. PubMed ID: 38960112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation.
    Li LP; Herzog W
    Biorheology; 2004; 41(3-4):181-94. PubMed ID: 15299251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.