These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10412422)

  • 1. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus.
    Lin DH; Yin FC
    J Biomech Eng; 1998 Aug; 120(4):504-17. PubMed ID: 10412422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanics of active contraction in cardiac muscle: Part II--Cylindrical models of the systolic left ventricle.
    Guccione JM; Waldman LK; McCulloch AD
    J Biomech Eng; 1993 Feb; 115(1):82-90. PubMed ID: 8445902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in intracellular calcium and tension of activated ferret papillary muscle in response to step length changes.
    Saeki Y; Kurihara S; Hongo K; Tanaka E
    J Physiol; 1993 Apr; 463():291-306. PubMed ID: 8246184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural three-dimensional constitutive law for the passive myocardium.
    Horowitz A; Lanir Y; Yin FC; Perl M; Sheinman I; Strumpf RK
    J Biomech Eng; 1988 Aug; 110(3):200-7. PubMed ID: 3172739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of left-ventricular shape on passive filling properties and end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    J Biomech; 2010 Jun; 43(9):1745-53. PubMed ID: 20227697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myocardial fiber architecture and left ventricular function.
    Ingels NB
    Technol Health Care; 1997 Apr; 5(1-2):45-52. PubMed ID: 9134618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the AIC-based model reduction for the general Holzapfel-Ogden myocardial constitutive law.
    Guan D; Ahmad F; Theobald P; Soe S; Luo X; Gao H
    Biomech Model Mechanobiol; 2019 Aug; 18(4):1213-1232. PubMed ID: 30945052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyperelastic description of elastomechanic properties of the heart: a new material law and its application.
    Häfner J; Sachse FB; Sansour C; Seemann G; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():770-3. PubMed ID: 12465299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation.
    Huyghe JM; van Campen DH; Arts T; Heethaar RM
    J Biomech; 1991; 24(9):841-9. PubMed ID: 1752868
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of force inhibition by 2,3-butanedione monoxime in rat cardiac muscle: roles of [Ca2+]i and cross-bridge kinetics.
    Backx PH; Gao WD; Azan-Backx MD; Marban E
    J Physiol; 1994 May; 476(3):487-500. PubMed ID: 8057256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constitutive relation for passive right-ventricular free wall myocardium.
    Sacks MS; Chuong CJ
    J Biomech; 1993 Nov; 26(11):1341-5. PubMed ID: 8262995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2,3-Butanedione monoxime increases contractile efficiency in the rabbit ventricle.
    Watkins MW; Slinker BK; Goto Y; LeWinter MM
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1811-8. PubMed ID: 1481905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonging myocardial preservation with a modified University of Wisconsin solution containing 2,3-butanedione monoxime and calcium.
    Stringham JC; Paulsen KL; Southard JH; Mentzer RM; Belzer FO
    J Thorac Cardiovasc Surg; 1994 Mar; 107(3):764-75. PubMed ID: 8127106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and functional consequences of barium-induced contracture in rabbit myocardium.
    Shibata T; Berman MR; Hunter WC; Jacobus WE
    Am J Physiol; 1990 Nov; 259(5 Pt 2):H1566-74. PubMed ID: 2240254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain softening behaviour in nonviable rat right-ventricular trabeculae, in the presence and the absence of butanedione monoxime.
    Kirton RS; Taberner AJ; Nielsen PM; Young AA; Loiselle DS
    Exp Physiol; 2004 Sep; 89(5):593-604. PubMed ID: 15258118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of tetanic myocardial contraction on coronary pressure-flow relationships.
    Livingston JZ; Resar JR; Yin FC
    Am J Physiol; 1993 Oct; 265(4 Pt 2):H1215-26. PubMed ID: 8238408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of 2,3-butanedione monoxime in isolated hearts: protection during reperfusion after global ischemia.
    Boban M; Stowe DF; Kampine JP; Goldberg AH; Bosnjak ZJ
    J Thorac Cardiovasc Surg; 1993 Mar; 105(3):532-40. PubMed ID: 8445931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.