These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 10412440)

  • 1. Load sharing between solid and fluid phases in articular cartilage: II--Comparison of experimental results and u-p finite element predictions.
    Mukherjee N; Wayne JS
    J Biomech Eng; 1998 Oct; 120(5):620-4. PubMed ID: 10412440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Load sharing between solid and fluid phases in articular cartilage: I--Experimental determination of in situ mechanical conditions in a porcine knee.
    Mukherjee N; Wayne JS
    J Biomech Eng; 1998 Oct; 120(5):614-9. PubMed ID: 10412439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of articular cartilage thickness in the articulated knee.
    Wayne JS; Brodrick CW; Mukherjee N
    Ann Biomed Eng; 1998; 26(1):96-102. PubMed ID: 10355554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhomogeneous cartilage properties enhance superficial interstitial fluid support and frictional properties, but do not provide a homogeneous state of stress.
    Krishnan R; Park S; Eckstein F; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):569-77. PubMed ID: 14618915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load partitioning influences the mechanical response of articular cartilage.
    Wayne JS
    Ann Biomed Eng; 1995; 23(1):40-7. PubMed ID: 7762881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biphasic surface amorphous layer lubrication of articular cartilage.
    Graindorge S; Ferrandez W; Jin Z; Ingham E; Grant C; Twigg P; Fisher J
    Med Eng Phys; 2005 Dec; 27(10):836-44. PubMed ID: 16046176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element study of a tissue-engineered cartilage transplant in human tibiofemoral joint.
    Vahdati A; Wagner DR
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1211-21. PubMed ID: 21809943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformation of articular cartilage during static loading of a knee joint--experimental and finite element analysis.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Salo J; Korhonen RK
    J Biomech; 2014 Jul; 47(10):2467-74. PubMed ID: 24813824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 1998 Oct; 120(5):608-13. PubMed ID: 10412438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inserting a pressensor film into articular joints on the actual contact mechanics.
    Wu JZ; Herzog W; Epstein M
    J Biomech Eng; 1998 Oct; 120(5):655-9. PubMed ID: 10412445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiphoton microscope measurement-based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco-anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method.
    Nakamachi E; Noma T; Nakahara K; Tomita Y; Morita Y
    Int J Numer Method Biomed Eng; 2017 Nov; 33(11):. PubMed ID: 28058781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A finite element study of stress distributions in normal and osteoarthritic knee joints.
    Chantarapanich N; Nanakorn P; Chernchujit B; Sitthiseripratip K
    J Med Assoc Thai; 2009 Dec; 92 Suppl 6():S97-103. PubMed ID: 20120670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of the meniscectomised tibio-femoral joint: implementation of advanced articular cartilage models.
    Mattei L; Campioni E; Accardi MA; Dini D
    Comput Methods Biomech Biomed Engin; 2014; 17(14):1553-71. PubMed ID: 23452160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational investigation of the time-dependent contact behaviour of the human tibiofemoral joint under body weight.
    Meng Q; Jin Z; Wilcox R; Fisher J
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1193-207. PubMed ID: 25500864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Congruency effects on load bearing in diarthrodial joints.
    Adeeb SM; Sayed Ahmed EY; Matyas J; Hart DA; Frank CB; Shrive NG
    Comput Methods Biomech Biomed Engin; 2004 Jun; 7(3):147-57. PubMed ID: 15512758
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of in situ elastic properties of biphasic cartilage based on a transversely isotropic hypo-elastic model.
    Garcia JJ; Altiero NJ; Haut RC
    J Biomech Eng; 2000 Feb; 122(1):1-8. PubMed ID: 10790823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-rate dependent stiffness of articular cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2003 Apr; 125(2):161-8. PubMed ID: 12751277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of load responsiveness of cartilage T1rho and T2 in porcine knee joints: an experimental loading MRI study.
    Hamada H; Nishii T; Tamura S; Tanaka H; Wakayama T; Sugano N
    Osteoarthritis Cartilage; 2015 Oct; 23(10):1776-9. PubMed ID: 26028138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.