These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 10412444)

  • 61. Influence of phase angle between axial and torsional loadings on fatigue fractures of bone.
    George WT; Vashishth D
    J Biomech; 2005 Apr; 38(4):819-25. PubMed ID: 15713303
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A fatigue damage model for the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Biomech; 2004 Oct; 37(10):1505-12. PubMed ID: 15336925
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Dependence of trabecular damage on mechanical strain.
    Wachtel EF; Keaveny TM
    J Orthop Res; 1997 Sep; 15(5):781-7. PubMed ID: 9420610
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Compressive fatigue behavior of human vertebral trabecular bone.
    Rapillard L; Charlebois M; Zysset PK
    J Biomech; 2006; 39(11):2133-9. PubMed ID: 16051256
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Repetitive loading damages healing ligaments more than sustained loading demonstrated by reduction in modulus and residual strength.
    Thornton GM; Bailey SJ
    J Biomech; 2012 Oct; 45(15):2589-94. PubMed ID: 22951277
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2002 Sep; 20(5):967-74. PubMed ID: 12382961
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microdamage propagation in trabecular bone due to changes in loading mode.
    Wang X; Niebur GL
    J Biomech; 2006; 39(5):781-90. PubMed ID: 16488217
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship.
    Nazemi SM; Amini M; Kontulainen SA; Milner JS; Holdsworth DW; Masri BA; Wilson DR; Johnston JD
    Clin Biomech (Bristol, Avon); 2015 Aug; 30(7):703-12. PubMed ID: 26024555
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone.
    Shi X; Wang X; Niebur GL
    Ann Biomed Eng; 2009 Feb; 37(2):354-62. PubMed ID: 19082893
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Continuum damage mechanics (CDM) modelling demonstrates that ligament fatigue damage accumulates by different mechanisms than creep damage.
    Schwab TD; Johnston CR; Oxland TR; Thornton GM
    J Biomech; 2007; 40(14):3279-84. PubMed ID: 17582420
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Time dependent properties of bovine meniscal attachments: stress relaxation and creep.
    Maes JA; Haut Donahue TL
    J Biomech; 2006; 39(16):3055-61. PubMed ID: 16360161
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion.
    Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T
    J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Trabecular bone strain changes associated with subchondral stiffening of the proximal tibia.
    McKinley TO; Bay BK
    J Biomech; 2003 Feb; 36(2):155-63. PubMed ID: 12547352
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Creep dominates tensile fatigue damage of the cement-bone interface.
    Kim DG; Miller MA; Mann KA
    J Orthop Res; 2004 May; 22(3):633-40. PubMed ID: 15099645
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Anisotropy of the fatigue behaviour of cancellous bone.
    Dendorfer S; Maier HJ; Taylor D; Hammer J
    J Biomech; 2008; 41(3):636-41. PubMed ID: 18005974
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Time-dependent circumferential deformation of cortical bone upon internal radial loading.
    Brown CU; Norman TL; Kish VL; Gruen TA; Blaha JD
    J Biomech Eng; 2002 Aug; 124(4):456-61. PubMed ID: 12188212
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cycle-dependent and time-dependent bone fracture with repeated loading.
    Carter DR; Caler WE
    J Biomech Eng; 1983 May; 105(2):166-70. PubMed ID: 6865359
    [TBL] [Abstract][Full Text] [Related]  

  • 78. High strain rate testing of bovine trabecular bone.
    Pilcher A; Wang X; Kaltz Z; Garrison JG; Niebur GL; Mason J; Song B; Cheng M; Chen W
    J Biomech Eng; 2010 Aug; 132(8):081012. PubMed ID: 20670061
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation.
    Bourne BC; van der Meulen MC
    J Biomech; 2004 May; 37(5):613-21. PubMed ID: 15046990
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The compressive strength of articular cartilage.
    Kerin AJ; Wisnom MR; Adams MA
    Proc Inst Mech Eng H; 1998; 212(4):273-80. PubMed ID: 9769695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.