These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 10412463)

  • 1. Stress intensity factors for a vertical surface crack in polyethylene subject to rolling and sliding contact.
    Eberhardt AW; Kim BS
    J Biomech Eng; 1998 Dec; 120(6):778-83. PubMed ID: 10412463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sliding locus on subsurface crack formation in ultra-high-molecular-weight polyethylene knee component.
    Todo S; Tomita N; Kitakura T; Yamano Y
    Biomed Mater Eng; 1999; 9(1):13-20. PubMed ID: 10436849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic compressive loading results in fatigue cracks in ultra high molecular weight polyethylene.
    Pruitt L; Koo J; Rimnac CM; Suresh S; Wright TM
    J Orthop Res; 1995 Jan; 13(1):143-6. PubMed ID: 7853097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue fracture of the stem-cement interface with a clamped cantilever beam test.
    Heuer DA; Mann KA
    J Biomech Eng; 2000 Dec; 122(6):647-51. PubMed ID: 11192387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An observation on subsurface defects of ultra high molecular weight polyethylene due to rolling contact.
    Ohashi M; Tomita N; Ikada Y; Ikeuchi K; Motoike T
    Biomed Mater Eng; 1996; 6(6):441-51. PubMed ID: 9138654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of cracks in polyethylene components of retrieved knee joint prostheses.
    Koizumi M; Tomita N; Tamai S; Oonishi H; Ikada Y
    J Orthop Sci; 1998; 3(6):330-5. PubMed ID: 9811985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribological behavior of artificial hip joint under the effects of magnetic field in dry and lubricated sliding.
    Zaki M; Aljinaidi A; Hamed M
    Biomed Mater Eng; 2003; 13(3):205-21. PubMed ID: 12883170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface texturing on the performance of biocompatible UHMWPE as a bearing material during in vitro lubricated sliding/rolling motion.
    López-Cervantes A; Domínguez-López I; Barceinas-Sánchez JD; García-García AL
    J Mech Behav Biomed Mater; 2013 Apr; 20():45-53. PubMed ID: 23455163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical tribological studies of a boundary lubricant functionalized poro-viscoelastic PVA hydrogel in normal contact and sliding.
    Blum MM; Ovaert TC
    J Mech Behav Biomed Mater; 2012 Oct; 14():248-58. PubMed ID: 22947923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of scratch resistance of cobalt chromium alloy bearing surface, articulating against ultra-high molecular weight polyethylene, due to third-body wear particles.
    Mirghany M; Jin ZM
    Proc Inst Mech Eng H; 2004; 218(1):41-50. PubMed ID: 14982345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic contact stress and rolling resistance model for total knee arthroplasties.
    Waldman SD; Bryant JT
    J Biomech Eng; 1997 Aug; 119(3):254-60. PubMed ID: 9285338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dominance of cyclic sliding in producing wear in total knee replacements.
    Blunn GW; Walker PS; Joshi A; Hardinge K
    Clin Orthop Relat Res; 1991 Dec; (273):253-60. PubMed ID: 1959278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crack propagation directions in unfilled resins.
    Baran G; Sadeghipour K; Jayaraman S; Silage D; Paul D; Boberick K
    J Dent Res; 1998 Nov; 77(11):1864-73. PubMed ID: 9823724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Stress Intensity Factor on Rail Fatigue Crack Propagation by Finite Element Method.
    Gao R; Liu M; Wang B; Wang Y; Shao W
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis.
    Peloquin JM; Elliott DM
    J Mech Behav Biomed Mater; 2016 Apr; 57():260-8. PubMed ID: 26741533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elasto-plastic contact analysis of an ultra-high molecular weight polyethylene tibial component based on geometrical measurement from a retrieved knee prosthesis.
    Cho CH; Murakami T; Sawae Y; Sakai N; Miura H; Kawano T; Iwamoto Y
    Proc Inst Mech Eng H; 2004; 218(4):251-9. PubMed ID: 15376727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crack propagation resistance is similar under static and cyclic loading in crosslinked UHMWPE: a pilot study.
    Furmanski J; Rimnac CM
    Clin Orthop Relat Res; 2011 Aug; 469(8):2302-7. PubMed ID: 21128033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residual stresses in ultra-high molecular weight polyethylene loaded cyclically by a rigid moving indenter in nonconforming geometries.
    Estupiñán JA; Bartel DL; Wright TM
    J Orthop Res; 1998 Jan; 16(1):80-8. PubMed ID: 9580258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.