These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 1041247)

  • 1. Mitochondria, chloroplasts, and energy transfer: a discussion.
    Ciba Found Symp; 1975; (31):63-8. PubMed ID: 1041247
    [No Abstract]   [Full Text] [Related]  

  • 2. The mechanism of energy conservation in the mitochondrial respiratory chain.
    Slater EC
    Harvey Lect; 1971-1972; 66():19-42. PubMed ID: 4949246
    [No Abstract]   [Full Text] [Related]  

  • 3. The mitochondrion and biologic oxidations.
    Nahrwold ML; Cohen PJ
    Clin Anesth; 1975; 11(1):1-23. PubMed ID: 164299
    [No Abstract]   [Full Text] [Related]  

  • 4. Energy metabolism in mitochondria.
    Heldt HW
    Angew Chem Int Ed Engl; 1972 Sep; 11(9):792-8. PubMed ID: 4628612
    [No Abstract]   [Full Text] [Related]  

  • 5. [Mechanism of oxidative phosphorylation and general principles of bioenergetics].
    Skulachev VP
    Usp Sovrem Biol; 1974 Mar; 77(2):125-54. PubMed ID: 4152071
    [No Abstract]   [Full Text] [Related]  

  • 6. [Energy, metabolite, oxygen, and electron transport along biological membranes].
    Skulachev VP
    Usp Sovrem Biol; 1979; 88(2):163-80. PubMed ID: 390908
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidative phosphorylation in bacteria: a genetic approach.
    Gutnick DL; Fragman D
    Horiz Biochem Biophys; 1977; 3():192-223. PubMed ID: 142062
    [No Abstract]   [Full Text] [Related]  

  • 8. Energy production in anaerobic organisms.
    Decker K; Jungermann K; Thauer RK
    Angew Chem Int Ed Engl; 1970 Feb; 9(2):138-58. PubMed ID: 4984685
    [No Abstract]   [Full Text] [Related]  

  • 9. Ion and water transport processes in spinach chloroplasts.
    Dilley RA
    Brookhaven Symp Biol; 1966; 19():258-80. PubMed ID: 5966910
    [No Abstract]   [Full Text] [Related]  

  • 10. On the nature of the mechanism of oxidative phosphorylation in mitochondria: a model and supportive evidence.
    Valdivia E
    Physiol Chem Phys; 1972; 4(4):317-24. PubMed ID: 4681767
    [No Abstract]   [Full Text] [Related]  

  • 11. [Mechanism of energy conservation in the mitochondria membrane].
    Muraoka S
    Tanpakushitsu Kakusan Koso; 1971 Aug; 16(9):764-74. PubMed ID: 4936492
    [No Abstract]   [Full Text] [Related]  

  • 12. [Recent acquisitions in cellular physiology: active transport of bivalent cations in the mitochondria].
    Rossi CS; Carafoli E
    Recenti Prog Med; 1968 Jan; 44(1):1-45. PubMed ID: 4907372
    [No Abstract]   [Full Text] [Related]  

  • 13. Biomembranes. Part M. Transport in bacteria, mitochondria, and chloroplasts: general approaches and transport systems.
    Methods Enzymol; 1986; 125():1-788. PubMed ID: 3713530
    [No Abstract]   [Full Text] [Related]  

  • 14. [Adenosine triphosphate and the hydrogen ion transmembrane potential--2 convertible and transportable forms of energy in the living cell].
    Skulachev VP
    Usp Sovrem Biol; 1977; 84(2):165-75. PubMed ID: 23618
    [No Abstract]   [Full Text] [Related]  

  • 15. Evolution of membrane bioenergetics.
    Wilson TH; Lin EC
    J Supramol Struct; 1980; 13(4):421-46. PubMed ID: 6453255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioenergetics and the problem of tumor growth.
    Racker E
    Am Sci; 1972; 60(1):56-63. PubMed ID: 4332766
    [No Abstract]   [Full Text] [Related]  

  • 17. Oxidative and photosynthetic phosphorylation mechanisms.
    Wang JH
    Science; 1970 Jan; 167(3914):25-30. PubMed ID: 5409474
    [No Abstract]   [Full Text] [Related]  

  • 18. Flip-flop model of energy interconversion by ATP synthetase.
    Repke KR; Schön R
    Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420
    [No Abstract]   [Full Text] [Related]  

  • 19. The molecular organization of mitochondrial membranes.
    Lehninger AL
    Adv Cytopharmacol; 1971 May; 1():199-208. PubMed ID: 4950315
    [No Abstract]   [Full Text] [Related]  

  • 20. Transmembrane electrochemical H+-potential as a convertible energy source for the living cell.
    Skulachev VP
    FEBS Lett; 1977 Feb; 74(1):1-9. PubMed ID: 14031
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.