BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 10413462)

  • 41. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance.
    Barreca ML; Lee KW; Chimirri A; Briggs JM
    Biophys J; 2003 Mar; 84(3):1450-63. PubMed ID: 12609852
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic analyses of DNA-binding mutants in the catalytic core domain of human immunodeficiency virus type 1 integrase.
    Lu R; Limón A; Ghory HZ; Engelman A
    J Virol; 2005 Feb; 79(4):2493-505. PubMed ID: 15681450
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes.
    Gao K; Butler SL; Bushman F
    EMBO J; 2001 Jul; 20(13):3565-76. PubMed ID: 11432843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Brownian and essential dynamics studies of the HIV-1 integrase catalytic domain.
    Weber W; Demirdjian H; Lins RD; Briggs JM; Ferreira R; McCammon JA
    J Biomol Struct Dyn; 1998 Dec; 16(3):733-45. PubMed ID: 10052629
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biochemical and random mutagenesis analysis of the region carrying the catalytic E152 amino acid of HIV-1 integrase.
    Calmels C; de Soultrait VR; Caumont A; Desjobert C; Faure A; Fournier M; Tarrago-Litvak L; Parissi V
    Nucleic Acids Res; 2004; 32(4):1527-38. PubMed ID: 14999095
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity.
    Zheng R; Jenkins TM; Craigie R
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13659-64. PubMed ID: 8942990
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The catalytic domain of human immunodeficiency virus integrase: ordered active site in the F185H mutant.
    Bujacz G; Alexandratos J; Qing ZL; Clément-Mella C; Wlodawer A
    FEBS Lett; 1996 Dec; 398(2-3):175-8. PubMed ID: 8977101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Stabilization of the integrase-DNA complex by Mg2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors.
    Miri L; Bouvier G; Kettani A; Mikou A; Wakrim L; Nilges M; Malliavin TE
    Proteins; 2014 Mar; 82(3):466-78. PubMed ID: 24038133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A synthetic peptide from the human immunodeficiency virus type-1 integrase exhibits coiled-coil properties and interferes with the in vitro integration activity of the enzyme. Correlated biochemical and spectroscopic results.
    Sourgen F; Maroun RG; Frère V; Bouziane M; Auclair C; Troalen F; Fermandjian S
    Eur J Biochem; 1996 Sep; 240(3):765-73. PubMed ID: 8856082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of a nucleotide binding site in HIV-1 integrase.
    Drake RR; Neamati N; Hong H; Pilon AA; Sunthankar P; Hume SD; Milne GW; Pommier Y
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4170-5. PubMed ID: 9539708
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein.
    Wang JY; Ling H; Yang W; Craigie R
    EMBO J; 2001 Dec; 20(24):7333-43. PubMed ID: 11743009
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc.
    Eijkelenboom AP; van den Ent FM; Vos A; Doreleijers JF; Hård K; Tullius TD; Plasterk RH; Kaptein R; Boelens R
    Curr Biol; 1997 Oct; 7(10):739-46. PubMed ID: 9368756
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium.
    Goldgur Y; Dyda F; Hickman AB; Jenkins TM; Craigie R; Davies DR
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9150-4. PubMed ID: 9689049
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural determinants of metal-induced conformational changes in HIV-1 integrase.
    Asante-Appiah E; Seeholzer SH; Skalka AM
    J Biol Chem; 1998 Dec; 273(52):35078-87. PubMed ID: 9857042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The core domain of HIV-1 integrase recognizes key features of its DNA substrates.
    Gerton JL; Brown PO
    J Biol Chem; 1997 Oct; 272(41):25809-15. PubMed ID: 9325310
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nano-dynamics: engineering allostery via tandem duplication and turn energetics.
    Blaber M
    Trends Biotechnol; 2004 Jan; 22(1):1-2. PubMed ID: 14690614
    [No Abstract]   [Full Text] [Related]  

  • 57. A homology model of HIV-1 integrase and analysis of mutations designed to test the model.
    Johnson BC; Métifiot M; Ferris A; Pommier Y; Hughes SH
    J Mol Biol; 2013 Jun; 425(12):2133-46. PubMed ID: 23542006
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solution conformation and dynamics of the HIV-1 integrase core domain.
    Fitzkee NC; Masse JE; Shen Y; Davies DR; Bax A
    J Biol Chem; 2010 Jun; 285(23):18072-84. PubMed ID: 20363759
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural dynamics of full-length retroviral integrase: a molecular dynamics analysis.
    Balasubramanian S; Rajagopalan M; Ramaswamy A
    J Biomol Struct Dyn; 2012; 29(6):659-70. PubMed ID: 22545997
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heterogeneity in recombinant HIV-1 integrase corrected by site-directed mutagenesis: the identification and elimination of a protease cleavage site.
    Hickman AB; Dyda F; Craigie R
    Protein Eng; 1997 May; 10(5):601-6. PubMed ID: 9215579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.