BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

782 related articles for article (PubMed ID: 10413485)

  • 1. Probing Aplysia californica adenosine 5'-diphosphate ribosyl cyclase for substrate binding requirements: design of potent inhibitors.
    Migaud ME; Pederick RL; Bailey VC; Potter BV
    Biochemistry; 1999 Jul; 38(28):9105-14. PubMed ID: 10413485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nicotinamide 2-fluoroadenine dinucleotide unmasks the NAD+ glycohydrolase activity of Aplysia californica adenosine 5'-diphosphate ribosyl cyclase.
    Zhang B; Muller-Steffner H; Schuber F; Potter BV
    Biochemistry; 2007 Apr; 46(13):4100-9. PubMed ID: 17341094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reaction mechanism for CD38. A single intermediate is responsible for cyclization, hydrolysis, and base-exchange chemistries.
    Sauve AA; Munshi C; Lee HC; Schramm VL
    Biochemistry; 1998 Sep; 37(38):13239-49. PubMed ID: 9748331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles for adenosine ribose hydroxyl groups in cyclic adenosine 5'-diphosphate ribose-mediated Ca2+ release.
    Ashamu GA; Sethi JK; Galione A; Potter BV
    Biochemistry; 1997 Aug; 36(31):9509-17. PubMed ID: 9235996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of NAADP and cADPR in mitochondria.
    Liang M; Chini EN; Cheng J; Dousa TP
    Arch Biochem Biophys; 1999 Nov; 371(2):317-25. PubMed ID: 10545220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities.
    Yamamoto-Katayama S; Ariyoshi M; Ishihara K; Hirano T; Jingami H; Morikawa K
    J Mol Biol; 2002 Feb; 316(3):711-23. PubMed ID: 11866528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme properties of Aplysia ADP-ribosyl cyclase: comparison with NAD glycohydrolase of CD38 antigen.
    Inageda K; Takahashi K; Tokita K; Nishina H; Kanaho Y; Kukimoto I; Kontani K; Hoshino S; Katada T
    J Biochem; 1995 Jan; 117(1):125-31. PubMed ID: 7775378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of calcium-mobilizing metabolites by a novel member of the ADP-ribosyl cyclase family expressed in Schistosoma mansoni.
    Goodrich SP; Muller-Steffner H; Osman A; Moutin MJ; Kusser K; Roberts A; Woodland DL; Randall TD; Kellenberger E; LoVerde PT; Schuber F; Lund FE
    Biochemistry; 2005 Aug; 44(33):11082-97. PubMed ID: 16101292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unifying mechanism for Aplysia ADP-ribosyl cyclase and CD38/NAD(+) glycohydrolases.
    Cakir-Kiefer C; Muller-Steffner H; Schuber F
    Biochem J; 2000 Jul; 349(Pt 1):203-10. PubMed ID: 10861229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP ribosyl cyclase activity in rat parotid acinar cells.
    Looms D; Nauntofte B; Dissing S
    Eur J Morphol; 1998 Aug; 36 Suppl():181-5. PubMed ID: 9825918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic synthesis and characterizations of cyclic GDP-ribose. A procedure for distinguishing enzymes with ADP-ribosyl cyclase activity.
    Graeff RM; Walseth TF; Fryxell K; Branton WD; Lee HC
    J Biol Chem; 1994 Dec; 269(48):30260-7. PubMed ID: 7982936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of cADPR-Hydrolase by ADP-ribose potentiates cADPR synthesis from beta-NAD+.
    Genazzani AA; Bak J; Galione A
    Biochem Biophys Res Commun; 1996 Jun; 223(3):502-7. PubMed ID: 8687425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assay for ADP-ribosyl cyclase by reverse-phase high-performance liquid chromatography.
    Schweitzer K; Mayr GW; Guse AH
    Anal Biochem; 2001 Dec; 299(2):218-26. PubMed ID: 11730346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning, expression, and functional characterization of a novel member of the CD38 family of ADP-ribosyl cyclases.
    Adebanjo OA; Koval A; Moonga BS; Wu XB; Yao S; Bevis PJ; Kumegawa M; Zaidi M; Sun L
    Biochem Biophys Res Commun; 2000 Jul; 273(3):884-9. PubMed ID: 10891341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of bovine liver mitochondrial NAD+ glycohydrolase as ADP-ribosyl cyclase.
    Ziegler M; Jorcke D; Schweiger M
    Biochem J; 1997 Sep; 326 ( Pt 2)(Pt 2):401-5. PubMed ID: 9291111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate.
    Graeff RM; Franco L; De Flora A; Lee HC
    J Biol Chem; 1998 Jan; 273(1):118-25. PubMed ID: 9417055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural determinants for N1/N7 cyclization of nicotinamide hypoxanthine 5'-dinucleotide (NHD+) derivatives by ADP-ribosyl cyclase from aplysia californica: Ca2+-mobilizing activity of 8-substituted cyclic inosine 5'-diphosphoribose analogues in T-lymphocytes.
    Moreau C; Wagner GK; Weber K; Guse AH; Potter BV
    J Med Chem; 2006 Aug; 49(17):5162-76. PubMed ID: 16913705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sarcoplasmic reticulum-associated and protein kinase C-regulated ADP-ribosyl cyclase in cardiac muscle.
    Mészáros LG; Wrenn RW; Váradi G
    Biochem Biophys Res Commun; 1997 May; 234(1):252-6. PubMed ID: 9168998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the active site of ADP-ribosyl cyclase.
    Munshi C; Thiel DJ; Mathews II; Aarhus R; Walseth TF; Lee HC
    J Biol Chem; 1999 Oct; 274(43):30770-7. PubMed ID: 10521467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent analogs of cyclic ADP-ribose: synthesis, spectral characterization, and use.
    Graeff RM; Walseth TF; Hill HK; Lee HC
    Biochemistry; 1996 Jan; 35(2):379-86. PubMed ID: 8555207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.