BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10413513)

  • 1. Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance.
    Rivas G; Fernandez JA; Minton AP
    Biochemistry; 1999 Jul; 38(29):9379-88. PubMed ID: 10413513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hidden self-association of proteins.
    Muramatsu N; Minton AP
    J Mol Recognit; 1989 Apr; 1(4):166-71. PubMed ID: 2631864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ.
    Rivas G; Fernández JA; Minton AP
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3150-5. PubMed ID: 11248047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative characterization of the concentration-dependent interaction between molecules of Dextran 70 in aqueous solution: Measurement and analysis in the context of thermodynamic and compressible sphere models.
    Fernández C; Fodeke AA; Minton AP
    Biopolymers; 2019 Oct; 110(10):e23284. PubMed ID: 31059131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sedimentation equilibrium in a solution containing an arbitrary number of solute species at arbitrary concentrations: theory and application to concentrated solutions of ribonuclease.
    Zorrilla S; Jiménez M; Lillo P; Rivas G; Minton AP
    Biophys Chem; 2004 Mar; 108(1-3):89-100. PubMed ID: 15043923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divalent cation and ionic strength effects on Vinca alkaloid-induced tubulin self-association.
    Lobert S; Boyd CA; Correia JJ
    Biophys J; 1997 Jan; 72(1):416-27. PubMed ID: 8994628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-ideal tracer sedimentation equilibrium: a powerful tool for the characterization of macromolecular interactions in crowded solutions.
    Rivas G; Minton AP
    J Mol Recognit; 2004; 17(5):362-7. PubMed ID: 15362093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic nonideality as a probe of macromolecular isomerizations: application to the acid expansion of bovine serum albumin.
    Winzor DJ; Ford CL; Nichol LW
    Arch Biochem Biophys; 1984 Oct; 234(1):15-23. PubMed ID: 6207777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effective hard particle model provides a simple, robust, and broadly applicable description of nonideal behavior in concentrated solutions of bovine serum albumin and other nonassociating proteins.
    Minton AP
    J Pharm Sci; 2007 Dec; 96(12):3466-9. PubMed ID: 17588257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo.
    Guttman HJ; Anderson CF; Record MT
    Biophys J; 1995 Mar; 68(3):835-46. PubMed ID: 7756551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior of aqueous solutions of bovine serum albumin in the presence of dextran, at rest, and under shear.
    Antonov YA; Wolf BA
    Biomacromolecules; 2006 May; 7(5):1562-7. PubMed ID: 16677039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative characterization of polymer-polymer, protein-protein, and polymer-protein interaction via tracer sedimentation equilibrium.
    Fodeke AA; Minton AP
    J Phys Chem B; 2010 Aug; 114(33):10876-80. PubMed ID: 20677765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracer diffusion in F-actin and Ficoll mixtures. Toward a model for cytoplasm.
    Hou L; Lanni F; Luby-Phelps K
    Biophys J; 1990 Jul; 58(1):31-43. PubMed ID: 2116926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adair was right in his time.
    Eisenberg H
    Eur Biophys J; 2003 Aug; 32(5):406-11. PubMed ID: 12712265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative characterization of weak self-association in concentrated solutions of immunoglobulin G via the measurement of sedimentation equilibrium and osmotic pressure.
    Jiménez M; Rivas G; Minton AP
    Biochemistry; 2007 Jul; 46(28):8373-8. PubMed ID: 17590018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of macromolecular heterogeneity by equilibrium sedimentation techniques.
    Xu Y
    Biophys Chem; 2004 Mar; 108(1-3):141-63. PubMed ID: 15043927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative characterization of temperature-independent polymer-polymer interaction and temperature-dependent protein-protein and protein-polymer interactions in concentrated polymer solutions.
    Fodeke AA
    Eur Biophys J; 2019 Mar; 48(2):189-202. PubMed ID: 30635669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative characterization of temperature-independent and temperature-dependent protein-protein interactions in highly nonideal solutions.
    Fodeke AA; Minton AP
    J Phys Chem B; 2011 Sep; 115(38):11261-8. PubMed ID: 21846103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide valproates: Structure - property relationships in solution.
    Grube M; Dinu V; Lindemann H; Pielenz F; Festag G; Schubert US; Heinze T; Harding S; Nischang I
    Carbohydr Polym; 2020 Oct; 246():116652. PubMed ID: 32747284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.